Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 70
Filter
Add more filters










Publication year range
1.
Water Res ; 253: 121324, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38382294

ABSTRACT

In drinking water distribution systems, including premise plumbing, dissolved oxygen (DO) and free chlorine (FC) are common oxidants and ductile iron (DI) and copper (Cu) are commonly used pipe materials. Microelectrodes as a tool have been applied in previous corrosion research and were used in this study to collect quantifiable data and understand DO and FC reactivity and pH changes at the water-metal interface. Using microelectrodes, pH, DO, and FC profiles from the bulk water to near and at the surface of aged DI (154-190 d) and Cu (2 d and 86-156 d) coupons were investigated during periods of flow and stagnation (30 min). Using the measured microelectrode profiles, oxidant fluxes and apparent surface reaction rate constants were calculated to elucidate differences between DO and FC reactivity with the coupons. Microelectrodes were successfully applied to measure pH, DO, and FC profiles from the bulk water to near aged DI and Cu coupon surfaces; Cu coupons aged quickly and exhibited less reactivity at 2 d with DO and FC than aged DI coupons did after 154-190 d; and for the aged DI coupon experiments, orthophosphate presence stabilized pH profiles where without orthophosphate pH fluctuations of greater than 2 pH units occurred from the bulk water to the DI coupon surface.

2.
J Water Health ; 22(2): 296-308, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38421624

ABSTRACT

Communities across the United States and particularly in the Midwest continue to grapple with the complications associated with aging infrastructure. This includes the presence of lead (Pb)-bearing plumbing components such as lead service lines, downstream galvanized iron pipes, and Pb/tin solder. The community of Benton Harbor, MI, experienced six Pb action level exceedances between 2018 and 2021, leading to increasing community concern and a request from the state of Michigan for the US Environmental Protection Agency involvement. Between 9 November and 17 December 2021, US EPA Region 5 and Office of Research and Development, along with the state of Michigan, conducted a water filter efficacy and Pb-nanoparticulate (<100 nm) study to evaluate the performance of NSF/ANSI-53 Pb-certified drinking water filters and the presence of nanoparticulate. In this study, a total of 199 properly installed and operated drinking water filters (combination of faucet mounted and pitcher) were tested in their residential locations. One hundred percent of the water filters were found to perform to the standard to which they were certified, with filtered drinking water Pb concentrations below 5 ppb (maximum observed was 2.5 ppb). In addition, Pb particulate was identified; however, discrete Pb-containing nanoparticles were not widely found or identified.


Subject(s)
Drinking Water , Nanoparticles , Lead , Iron , Michigan
3.
Front Microbiol ; 14: 1260460, 2023.
Article in English | MEDLINE | ID: mdl-37915853

ABSTRACT

Opportunistic premise plumbing pathogens (OPPPs) have been detected in buildings' plumbing systems causing waterborne disease outbreaks in the United States. In this study, we monitored the occurrence of OPPPs along with free-living amoeba (FLA) and investigated the effects of residential activities in a simulated home plumbing system (HPS). Water samples were collected from various locations in the HPS and analyzed for three major OPPPs: Legionella pneumophila, nontuberculous mycobacterial species (e.g., Mycobacterium avium, M. intracellulare, and M. abscessus), and Pseudomonas aeruginosa along with two groups of amoebas (Acanthamoeba and Vermamoeba vermiformis). A metagenomic approach was also used to further characterize the microbial communities. Results show that the microbial community is highly diverse with evidence of spatial and temporal structuring influenced by environmental conditions. L. pneumophila was the most prevalent pathogen (86% of samples), followed by M. intracellulare (66%) and P. aeruginosa (21%). Interestingly, M. avium and M. abscessus were not detected in any samples. The data revealed a relatively low prevalence of Acanthamoeba spp. (4%), while V. vermiformis was widely detected (81%) across all the sampling locations within the HPS. Locations with a high concentration of L. pneumophila and M. intracellulare coincided with the highest detection of V. vermiformis, suggesting the potential growth of both populations within FLA and additional protection in drinking water. After a period of stagnation lasting at least 2-weeks, the concentrations of OPPPs and amoeba immediately increased and then decreased gradually back to the baseline. Furthermore, monitoring the microbial population after drainage of the hot water tank and partial drainage of the entire HPS demonstrated no significant mitigation of the selected OPPPs. This study demonstrates that these organisms can adjust to their environment during such events and may survive in biofilms and/or grow within FLA, protecting them from stressors in the supplied water.

4.
Water Res ; 246: 120725, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37857012

ABSTRACT

Lead service lines (LSLs), when present, are the largest source of lead in drinking water, and their removal is necessary to reduce public exposure to lead from drinking water. Unfortunately, the composition of many service lines (SLs) is uncertain. The town of Bennington, Vermont, for example, has unreliable SL records, making it challenging to build an inventory and conduct an LSL replacement program. In 2017, Bennington commenced a project to identify SL materials and replace all LSLs. 159 control homes, consisting of 99 LSL and 60 non-LSL sites, were chosen for record reviews, visual SL observations, fully flushed (FF) and sequential profile water sampling, and test excavations to evaluate method accuracies. Of the 159 control homes, records for 90 % of the 99 known LSL homes were accurate. Whereas 3 % of the 60 non-lead SL homes' records accurately identified SL material. Fully flushed and sequential profile samples (SPSs) were 73 % and 95 % accurate for identifying LSLs and 95 % and 83 % accurate for identifying non-LSLs, respectively. Results were 100 % accurate when visual observations, FF samples, and test excavation were used in a stepwise approach. A stepwise approach consisting of visual SL observations, FF samples, and SPSs achieved a 98 % accuracy at identifying LSLs and a 67 % cost reduction compared to performing test excavations at each home. Findings from this control group study are critical for state, tribal, and local officials to inform their decisions about the selected approach to identify unknown SLs.


Subject(s)
Drinking Water , Water Pollutants, Chemical , Water Supply , Lead/analysis , Water Pollutants, Chemical/analysis , Cities
5.
Water Res ; 244: 120425, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37544118

ABSTRACT

Properly certified NSF/ANSI 53 water filters are distributed as a temporary measure to protect residents from risk of exposure to elevated lead (Pb) levels resulting from water system changes and various activities. Water consumers and other stakeholders have raised questions on the performance of these filters in field settings, particularly in cases where water Pb levels exceeded the NSF/ANSI 53 challenge water level of 150 µg/L and when Pb phosphate nanoparticles (≤ 200 nm) were present in drinking water. This literature review summarizes findings from 23 studies that evaluated the ability of NSF/ANSI 53 post-2007 certified filters to reduce soluble and/or particulate Pb from water. The studies in total examined 1,486 faucet-mounted, 25 under-the-sink, and 167 pitcher filters, with 1,528 filters used in field studies and 150 filters in laboratory studies. This review found that filter performance varied with different filter type, test water source, and initial unfiltered total Pb concentration. 99% (1,512/1,528) of the filters used in field studies removed Pb to at or below the certification benchmark of pre-2019, 10 µg/L or post-2019, 5 µg/L. In contrast, 61% (91/150) of the filters used in laboratory studies reduced Pb to the benchmark. Laboratory filters were often tested under conditions beyond what they were certified to handle. Pb concentration, particle form and size, improper operation and maintenance of certified water filters were attributed to reported filter failures. This information is intended to help water utilities, regulators, and others make decisions regarding the deployment of water filters to the public when drinking water Pb exposure concerns have been raised.


Subject(s)
Drinking Water , Water Pollutants, Chemical , Water Purification , Lead , Water Purification/methods , Minerals , Water Pollutants, Chemical/analysis , Filtration
6.
Water Res ; 243: 120352, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37482000

ABSTRACT

Thirty-two short term (∼7.5 h) abiotic experiments were conducted with new ductile iron and copper coupons exposed to various water qualities, including pH (7 or 9), dissolved inorganic carbon (DIC, 10 or 50 mg C L-1) and phosphate (0 or 3 mg P L-1) concentrations and 4 mg Cl2 L-1 free chlorine or monochloramine. To quantify oxidant reactivity with the new metal coupons, microelectrodes were used to obtain oxidant (free chlorine or monochloramine and dissolved oxygen (DO)) concentration and pH microprofiles from the bulk water to near the metal coupon surface. From the microprofiles, apparent surface reaction rate constants (k) were determined for each oxidant. An ANOVA analysis evaluated if the five variables (Material, Oxidant, Phosphate, DIC, and pH) significantly affected estimates of k, finding that the Material and Oxidant variables and their interaction were statistically significant (p<0.05), but the effect of variables of Phosphate, DIC, and pH on k values were not significant in this study. In general, both ductile iron and copper coupons showed significant surface reactivity towards free chlorine and monochloramine. For ductile iron, DO consumption was greater than for copper, which showed minimal DO reactivity, and DO was less reactive towards the copper surface than either free chlorine or monochloramine. Furthermore, pH microprofiles provided insight into the complexity that might exist near corroding metal surfaces where the bulk water pH may be substantially different from that measured near metal surfaces which is significant as pH is a controlling variable in terms of scale formation and metal solubility. This study represents an important first step towards using microelectrodes to (1) understand and provide direct measurement of oxidant microprofiles from the bulk water to the metal surface; (2) determine pipe wall reactivity using the directly measured concentrations profiles versus estimated pipe wall reactivity from bulk water measurements, and (3) understand how variables measured by bulk water samples (e.g., pH) may be drastically different from what is occurring at and near the metal surface. Together, these insights will assist in understanding disinfectant residual maintenance, corrosion, and metal release.


Subject(s)
Copper , Water Supply , Iron , Oxidants , Chlorine , Microelectrodes , Water , Chlorides , Hydrogen-Ion Concentration , Corrosion
7.
Sci Total Environ ; 891: 163873, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37230337

ABSTRACT

Water lead measurements by two field analyzers, relying on anodic stripping voltammetry (ASV) and fluorescence spectroscopy, were compared to reference laboratory measurements by inductively coupled plasma mass spectrometry (ICP-MS) in progressively complex datasets (phases A, B, C), to assess field analyzer performance. Under controlled laboratory quantitative tests of dissolved lead within the field analysis range and optimal temperature range, lead recoveries by ASV ranged within 85-106 % of reference laboratory values (corresponding linear model: y = 0.96x, r2 = 0.99), compared to lower lead recoveries of 60-80 % by fluorescence (y = 0.69x, r2 = 0.99) in phase A. Field analyzer performance deteriorated in three opportunistic laboratory datasets compiled for phase B that contained dissolved lead (ASV: y = 0.80x, r2 = 0.98; no fluorescence data). Further lead underestimations were observed in five field datasets compiled for phase C, some of which contained known particulate lead (ASV: y = 0.54x, r2 = 0.76; fluorescence: y = 0.06x, r2 = 0.38). Deteriorating performance between phases was presumably due to the increasingly complex water matrices and lead particulates present in some phase C subsets (phase A < phase B < phase C). Phase C field samples had lead concentrations that were out-of-range, including a 5 % and 31 % false negative rate by ASV and by fluorescence, respectively. The range of results relevant to the diverse nature of compiled datasets, suggests that unless ideal conditions are known to be present (i.e., the lead content of water is dissolved within the field analysis range and optimal water temperature range), these field lead analyses might only be used as a water screening tool. Given the unknown conditions in many field settings, combined with the lead concentration underestimations including the false negative rates reported herein for field datasets, caution is encouraged when employing ASV and particularly fluorescence field analysis.


Subject(s)
Drinking Water , Lead , Lead/analysis , Drinking Water/analysis , Electrodes , Dust
8.
ACS ES T Water ; 3(2): 576-587, 2023 Jan 19.
Article in English | MEDLINE | ID: mdl-37035423

ABSTRACT

When implementing anion exchange (AEX) for per- and polyfluoroalkyl substances treatment, temporal drinking water quality changes from concurrent inorganic anion (IA) removal can create unintended consequences (e.g., corrosion control impacts). To understand potential effects, four drinking water-relevant IAs (bicarbonate, chloride, sulfate, and nitrate) and three gel-type, strong-base AEX resins were evaluated. Batch binary isotherm experiments provided estimates of IA selectivity with respect to chloride ( K x ∕ C ) for IA/resin combinations where bicarbonate < sulfate ≤ nitrate at studied conditions. A multi-IA batch experiment demonstrated that binary isotherm-determined K x ∕ C values predicted competitive behavior. Subsequent column experiments with and without natural organic matter (NOM) allowed for the validation of a new ion exchange column model (IEX-CM; https://github.com/USEPA/Water_Treatment_Models). IA breakthrough was well-simulated using binary isotherm-determined K x ∕ C values and was minimally impacted by NOM. Initial AEX effluent water quality changes with corrosion implications included increased chloride and decreased sulfate and bicarbonate concentrations, resulting in elevated chloride-to-sulfate mass ratios (CSMRs) and Larson ratios (LRs) and depressed pH until the complete breakthrough of the relevant IA(s). IEX-CM utility was further illustrated by simulating the treatment of low-IA source water and a change in the source water to understand the resulting duration of changes in IAs and water quality parameters.

9.
Water Res ; 230: 119587, 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36638728

ABSTRACT

Aerobic biotreatment systems can treat multiple reduced inorganic contaminants in groundwater, including ammonia (NH3), arsenic (As), iron (Fe), and manganese (Mn). While individual systems treating multiple contaminants simultaneously have been characterized and several systems treating one contaminant have been compared, a comparison of systems treating co-occurring contaminants is lacking. This study assessed the treatment performance and microbial communities within 7 pilot- and full-scale groundwater biotreatment systems in the United States that treated waters with pH 5.6-7.8, 0.1-2.0 mg/L dissolved oxygen, 75-376 mg CaCO3/L alkalinity, < 0.03-3.79 mg NH3-N/L, < 4-31 µg As/L, < 0.01-9.37 mg Fe/L, 2-1220 µg Mn/L, and 0.1-5.6 mg/L total organic carbon (TOC). Different reactor configurations and media types were represented, allowing for a broad assessment of linkages between water quality and microbial communities via microscopy, biofilm quantification, and molecular methods. Influent NH3, TOC, and pH contributed to differences in the microbial communities. Mn oxidase gene copy numbers were slightly negatively correlated with the influent Mn concentration, but no significant relationships between gene copy number and influent concentration were observed for the other contaminants. Extracellular enzyme activities, community composition, and carbon transformation pathways suggested heterotrophic bacteria may be important in nitrifying biofilters. Aerobic groundwater biofilters are complex, and improved understanding could lead to engineering enhancements.


Subject(s)
Arsenic , Groundwater , Water Pollutants, Chemical , Water Pollutants, Chemical/chemistry , Manganese/chemistry , Groundwater/chemistry , Iron/metabolism , Arsenic/chemistry , Carbon
10.
J Expo Sci Environ Epidemiol ; 33(2): 160-167, 2023 03.
Article in English | MEDLINE | ID: mdl-35986209

ABSTRACT

BACKGROUND: Exposure to lead (Pb), arsenic (As) and copper (Cu) may cause significant health issues including harmful neurological effects, cancer or organ damage. Determination of human exposure-relevant concentrations of these metal(loids) in drinking water, therefore, is critical. OBJECTIVE: We sought to characterize exposure-relevant Pb, As, and Cu concentrations in drinking water collected from homes participating in the American Healthy Homes Survey II, a national survey that monitors the prevalence of Pb and related hazards in United States homes. METHODS: Drinking water samples were collected from a national survey of 678 U.S. homes where children may live using an exposure-based composite sampling protocol. Relationships between metal(loid) concentration, water source and house age were evaluated. RESULTS: 18 of 678 (2.6%) of samples analyzed exceeded 5 µg Pb L-1 (Mean = 1.0 µg L-1). 1.5% of samples exceeded 10 µg As L-1 (Mean = 1.7 µg L-1) and 1,300 µg Cu L-1 (Mean = 125 µg L-1). Private well samples were more likely to exceed metal(loid) concentration thresholds than public water samples. Pb concentrations were correlated with Cu and Zn, indicative of brass as a common Pb source is samples analyzed. SIGNIFICANCE: Results represent the largest national-scale effort to date to inform exposure risks to Pb, As, and Cu in drinking water in U.S. homes using an exposure-based composite sampling approach. IMPACT STATEMENT: To date, there are no national-level estimates of Pb, As and Cu in US drinking water collected from household taps using an exposure-based sampling protocol. Therefore, assessing public health impacts from metal(loids) in drinking water remains challenging. Results presented in this study represent the largest effort to date to test for exposure-relevant concentrations of Pb, As and Cu in US household drinking water, providing a critical step toward improved understanding of metal(loid) exposure risk.


Subject(s)
Arsenic , Drinking Water , Metals, Heavy , Child , Humans , United States , Lead , Metals, Heavy/analysis , Arsenic/analysis , Family Characteristics , Environmental Monitoring
11.
AWWA Water Sci ; 5(3): 1-14, 2023 Oct 18.
Article in English | MEDLINE | ID: mdl-38268712

ABSTRACT

Existing heterotrophic denitrification reactors rely on microorganisms to consume dissolved oxygen (DO) and create conditions suitable for denitrification, but this practice leads to excessive microbial growth and increased organic carbon doses. An innovative reactor that uses nitrogen gas sparging through a contactor to strip DO was developed and tested in the lab. It reduced influent nitrate from 15 to <1 mg/L as N with nitrite accumulation <1 mg/L as N. It maintained a consistent flow rate and developed minimal headloss, making it easier to operate than the denitrifying dual-media filter that was operated in parallel. Gravel, polyvinyl chloride pieces, and no packing media were assessed as options for the nitrogen-sparged contactor, and gravel was found to support denitrification at the highest loading rate and was resilient to nitrogen-sparging shutoffs and intermittent operation. This innovative reactor appears promising for small drinking water systems.

12.
J Water Process Eng ; 56: 1-11, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38357328

ABSTRACT

The biological treatment process consisting of an aerated contactor and filter is effective for groundwaters containing elevated ammonia and other reduced contaminants, including iron, manganese, arsenic, and methane. Depth profiles characterizing microbial activity across aerated contactors are lacking. A 1-year pilot study comparing gravel- and ceramic-packed contactors was conducted, and media depth profile samples were collected at the conclusion of the study. Media and water samples also were collected from pilot-scale aerated contactors at 4 other water systems. Water quality, media surface metals concentrations, and a suite of biofilm parameters were analyzed. Media surface metals concentrations were greatest at the influent end. ATP concentrations, extracellular polymeric substances, and extracellular enzyme activities tended to be similar across depth. Bacteria and functional genes involved in contaminant oxidation co-occurred and tended to decrease across depth, but were not correlated to the media metals concentration. Microbial community composition changed with depth, and the diversity either decreased or remained similar. The microbial activity profiles through aerated contactors differed from what is typically reported for groundwater biofilters, suggesting that the different reactor flow and dissolved oxygen profiles impacted the microbial community.

13.
AWWA Water Sci ; 4(2): e1270, 2022.
Article in English | MEDLINE | ID: mdl-35865674

ABSTRACT

The study goal was to better understand the risks of elevated copper levels at US schools and childcare centers. Copper health effects, chemistry, occurrence, and remediation actions were reviewed. Of the more than 98,000 schools and 500,000 childcare centers, only 0.2% had copper water testing data in the federal Safe Drinking Water Information System database. Of the facilities designated public water systems, about 13% had reported an exceedance. Schools that were not designated a public water system (PWS) also had exceedances. Few studies document levels in schools and childcare centers. Widely different sampling and remedial actions were reported. Flushing contaminated water was the most evaluated remedial action but was unreliable because copper quickly rebounded when flushing stopped. Building water treatment systems have been used, but some were not capable of making the water safe. The health risk was difficult to determine due to the limited occurrence data and lack of best management practice studies. A national drinking water testing campaign and field studies are recommended.

14.
AWWA Water Sci ; 4(2): 0, 2022 Mar 17.
Article in English | MEDLINE | ID: mdl-35586783

ABSTRACT

With lead service lines (LSLs) remaining for decades to come, scale analyses are critical to helping limit lead exposure from drinking water. This laboratory has used an integrated suite of analytical techniques to characterize the elemental composition, mineral identification, and physical features of scales, helping the water industry to evaluate, predict, and reduce lead corrosion. The methods used in this laboratory to prepare and analyze the LSL scale, and guidance to achieving reliable and meaningful results, are described. Primary methods include the following: optical microscopy, powder X-ray diffraction, inductively coupled plasma spectroscopy, X-ray fluorescence, scanning electron microscopy with energy dispersive spectroscopy, combustion and coulometric analyses of C and S, and X-ray absorption spectroscopy. Examples of associated pitfalls and ways to avoid them are provided, including pipe excavation/transport, sample preparation, analysis, and data interpretation. Illustrative examples are presented of practical scale analysis questions that could be answered by combinations of pipe scale analyses.

15.
AWWA Water Sci ; 3(5)2021 Oct 26.
Article in English | MEDLINE | ID: mdl-34938979

ABSTRACT

A theoretical equilibrium lead(II) (Pb(II)) solubility model coded in Fortran (LEADSOL) was updated and implemented in open source R code, verified against LEADSOL output, and used to simulate theoretical equilibrium total soluble Pb(II) (TOTSOLPb) concentrations under a variety of practical scenarios. The developed R code file (app.R) is publicly available for download at GitHub (https://github.com/USEPA/TELSS) along with instructions to run the R code locally, allowing the user to explore Pb(II) solubility by selecting desired simulation conditions (e.g., water quality, equilibrium constants, and Pb(II) solids to consider). In addition, the R code serves as a reproducible baseline for alternative model development and future model improvements, allowing users to update, modify, and share the R code to meet their needs. Using the R code, several solubility diagrams were generated to highlight practical relationships related to TOTSOLPb concentrations, including the impact of pH and dissolved inorganic carbon, orthophosphate, sulfate, and chloride concentrations.

16.
AWWA Water Sci ; 3(5): 1-1255, 2021 Oct 27.
Article in English | MEDLINE | ID: mdl-34938981

ABSTRACT

Many water systems are challenged with uncertainty regarding service line material type. This work investigated using a simple drinking water flushed sampling approach and a more complicated and invasive sequential profile sampling approach to predict whether homes had an existing lead service line (LSL). Homes that never had an LSL (control groups) and homes with LSLs (study groups) in two communities having different degrees of corrosion control were sampled. Using control groups' results, community-specific "threshold" lead levels were determined and compared to results from study groups. The flushed sampling maximum lead concentration (FMC) of lead accurately predicted 100% and 60% of LSL sites for the community with poor and good corrosion control, respectively. The weighted average sequential profile lead concentration (WASLC) increased the 40% not identified as LSL sites by fully flushed samples to 100%. The WASLC closely followed by the maximum sequential profile lead concentration were most reliable in identifying LSLs.

17.
Water Res ; 203: 117485, 2021 Sep 15.
Article in English | MEDLINE | ID: mdl-34371232

ABSTRACT

Hard water and elevated ammonia are problems for many United States groundwater drinking water utilities, and some utilities, particularly those in the Midwest, face both challenges. Ion (cation) exchange (IX) is a common treatment technique for hardness reduction (i.e., softening) and may be used to remove ammonia as well, but these constituents may compete in IX and impact overall treatment performance. Few data have been reported on the impact on ammonia concentrations when using IX for softening in full-scale systems. This study investigated four full-scale groundwater treatment plants in Illinois that practice IX for softening (raw water hardness > 220 mg/L as CaCO3) and have elevated groundwater ammonia concentrations (> 2 mg N/L). Sampling throughout the year revealed consistent finished water hardness levels but variable ammonia concentrations. Ammonia removal varied and depended on how much water had been treated since the last regeneration. High ammonia removal (sometimes > 90%) occurred in the first half of the IX service cycle, while effluent ammonia concentrations increased compared to the influent (sometimes > 200%) towards the end of the IX cycle (total length 50,000-92,000 gallons [190-350 m3]). Ammonia removal efficiency varied among the plants, but the overall trends were similar. Because variable ammonia concentrations may make it difficult to produce a consistent total chlorine residual, they can negatively impact disinfection and water quality in the distribution system. Ammonia concentrations should be considered when designing softening systems to determine regeneration frequency, develop blending strategies, or include an alternative ammonia treatment process before IX softening to produce a more stable and consistent finished water.


Subject(s)
Drinking Water , Water Pollutants, Chemical , Water Purification , Ammonia , Ion Exchange , Water Quality , Water Softening
18.
Aqua (Lond) ; 70(5): 665-673, 2021.
Article in English | MEDLINE | ID: mdl-34447969

ABSTRACT

The U.S. Environmental Protection Agency conducted an Arsenic Demonstration Program (ADP) whereby 50 full, small-scale arsenic removal treatment systems were evaluated for removing arsenic to below the maximum contaminant level of 10 µg/L and their operating cost for a minimum of 1 year. The majority (28) of the systems installed were adsorptive media (AM) technology with the media replaced when exhausted. This paper reports on the results of two ADP projects and two laboratory rapid small-scale column tests (RSSCTs) using the iron-based media, Bayoxide E33 (E33) AM for the removal of arsenic (As) and the co-occurring contaminants (COCs) of vanadium and to a lesser degree fluoride (F) and nitrate (NO3). The ADP studies found that the AM effectively removed the COC of V, but with a lower removal capacity than of As. One ADP study found the AM to be ineffective for the removal of F and NO3. The RSSCT conducted on two other source waters also found vanadium to be removed by the same AM. The study results suggested the AM selectively sequence of As > V > F = N. The study also investigated the AM to achieve an As limit of 5 µg/L. The AM was found to reduce As to below 5 µg/L with around 30% shorter treatment run lengths.

19.
Environ Sci Technol ; 2021 Jul 28.
Article in English | MEDLINE | ID: mdl-34319119

ABSTRACT

Corrosion of copper material in drinking water systems causes public health concerns and plumbing failures. This study investigated the early corrosion of new copper surfaces in situ using a novel technique: quartz crystal microbalance with dissipation (QCMD). The QCMD results showed that increasing the water pH from 6.5 to 9.0 and the addition of 6 mg/L orthophosphate at pH 6.5 and 9.0 slowed down the copper surface mass changes as indicated by the reduced changes in frequency (Δf5) at 51-89% and total copper release at 29-72%. The water pH 9.0 without orthophosphate was the most likely to induce localized corrosion relative to other conditions at pH 6.5 and pH 9.0 with orthophosphate. Based on the changes in dissipation values (ΔD5) from QCMD and the morphology, microstructure, and composition of the deposited copper corrosion byproducts, digital microscopy, field-emission scanning electron microscopy with energy dispersive spectroscopy, and X-ray photoelectron spectrometry analyses confirmed that the pH and orthophosphate inhibited copper corrosion with different mechanisms. QCMD provided sensitive, rapid, and continuous responses to mass and surface changes and can be useful for evaluating early water corrosivity to new copper.

20.
J Water Health ; 19(3): 468-477, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34152299

ABSTRACT

Legionella infections have steadily increased in the United States over the last 20 years, and most of these infections have been attributed to contaminated water. The gold standard for confirmation of Legionella presence in water is culturing with Buffered Charcoal Yeast Extract (BCYE) agar. Following many modifications, this method is still time-consuming, expensive, and can take longer than 10 days for full confirmation. The Legiolert is a newer and simpler culture product that is claimed to be able to quantify Legionella pneumophila in 7 days with high sensitivity and specificity and does not need further confirmation for the presence of L. pneumophila. This study compared the culturability of L. pneumophila occurring in a simulated home plumbing system using both Legiolert and BCYE agar methods. Out of 185 water samples, Legiolert and BCYE method detected L. pneumophila in 83 and 85% of the samples, respectively. The two methods were determined to be statistically equivalent for culturability of L. pneumophila, though the detected levels by Legiolert were slightly higher than the BCYE method. The molecular confirmation of positive (n = 254) and negative wells (n = 82) with Legiolert also showed a high specificity of 96.5% (i.e., 3.5% false positives (9/254) and 0% false negatives (0/82)).


Subject(s)
Drinking Water , Legionella pneumophila , Legionella , Legionnaires' Disease , Humans , Water Microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...