Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Langmuir ; 33(37): 9416-9425, 2017 09 19.
Article in English | MEDLINE | ID: mdl-28617602

ABSTRACT

Platinum is state-of-the-art for fast electron transfer whereas carbon electrodes, which have semimetal electronic character, typically exhibit slow electron-transfer kinetics. But when we turn to practical electrochemical devices, we turn to carbon. To move energy devices and electro(bio)analytical measurements to a new performance curve requires improved electron-transfer rates at carbon. We approach this challenge with electroless deposition of disordered, nanoscopic anhydrous ruthenium oxide at pyrolytic carbon prepared by thermal decomposition of benzene (RuOx@CVD-C). We assessed traditionally fast, chloride-assisted ([Fe(CN)6]3-/4-) and notoriously slow ([Fe(H2O)6]3+/2+) electron-transfer redox probes at CVD-C and RuOx@CVD-C electrodes and calculated standard heterogeneous rate constants as a function of heat treatment to crystallize the disordered RuOx domains to their rutile form. For the fast electron-transfer probe, [Fe(CN)6]3-/4-, the rate increases by 34× over CVD-C once the RuOx is calcined to form crystalline rutile RuO2. For the classically outer-sphere [Fe(H2O)6]3+/2+, electron-transfer rates increase by an even greater degree over CVD-C (55×). The standard heterogeneous rate constant for each probe approaches that observed at Pt but does so using only minimal loadings of RuOx.

2.
Chem Soc Rev ; 38(1): 226-52, 2009 Jan.
Article in English | MEDLINE | ID: mdl-19088976

ABSTRACT

The design and fabrication of three-dimensional multifunctional architectures from the appropriate nanoscale building blocks, including the strategic use of void space and deliberate disorder as design components, permits a re-examination of devices that produce or store energy as discussed in this critical review. The appropriate electronic, ionic, and electrochemical requirements for such devices may now be assembled into nanoarchitectures on the bench-top through the synthesis of low density, ultraporous nanoarchitectures that meld high surface area for heterogeneous reactions with a continuous, porous network for rapid molecular flux. Such nanoarchitectures amplify the nature of electrified interfaces and challenge the standard ways in which electrochemically active materials are both understood and used for energy storage. An architectural viewpoint provides a powerful metaphor to guide chemists and materials scientists in the design of energy-storing nanoarchitectures that depart from the hegemony of periodicity and order with the promise--and demonstration--of even higher performance (265 references).

3.
ACS Nano ; 2(4): 784-90, 2008 Apr.
Article in English | MEDLINE | ID: mdl-19206611

ABSTRACT

Using two-step (air/argon) thermal processing, sol-gel-derived nickel-iron oxide aerogels are transformed into monodisperse, networked nanocrystalline magnetic oxides of NiFe(2)O(4) with particle diameters that can be ripened with increasing temperature under argon to 4.6, 6.4, and 8.8 nm. Processing in air alone yields poorly crystalline materials; heating in argon alone leads to single phase, but diversiform, polydisperse NiFe(2)O(4), which hampers interpretation of the magnetic properties of the nanoarchitectures. The two-step method yields an improved model system to study magnetic effects as a function of size on the nanoscale while maintaining the particles within the size regime of single domain magnets, as networked building blocks, not agglomerates, and without stabilizing ligands capping the surface.


Subject(s)
Crystallization/methods , Ferric Compounds/chemistry , Nanostructures/chemistry , Nanostructures/ultrastructure , Nanotechnology/methods , Nickel/chemistry , Air , Gels/chemistry , Macromolecular Substances/chemistry , Materials Testing , Molecular Conformation , Particle Size , Surface Properties , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...