Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
J Food Prot ; : 100274, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38583716

ABSTRACT

Monitoring food quality throughout the supply chain in a rapid and cost-effective way allows on-time decision making, reducing food waste and increasing sustainability. In that framework, a portable multispectral imaging sensor was used, while the acquired data in combination with neural networks were evaluated for the prediction of fish fillets quality. Images of fish fillets were acquired using samples from both aquaculture and retail stores of different packaging and fish parts. The obtained products (air or vacuum packaged) were further stored at different temperature conditions. In parallel to image acquisition, microbial quality was estimated as well. The data were used for the training of predictive neural models that aimed to estimate total aerobic counts (TAC). The models were developed and validated using data from aquaculture and were externally validated with samples purchased from the retail stores. The set up allowed the evaluation of models for the different parts of the fish and conditions. The performance for the validation set was similar for flesh (RMSE: 0.402-0.547) and skin side (RMSE: 0.500-0.533) of the fish fillets. The performance for the different packaging conditions was also similar, however, in the external validation, the vacuum-packaged samples showed better performance in terms of RMSE compared to the air-packaged ones. Models irrespective of packaging condition are very important for cases where the products' history is unknown although the prediction capability was not as high as in the models per packaging condition individually. The models tested with unknown samples (i.e., from retail stores) showed poorer performance (RMSE: 1.061-1.414) compared to the models validated with data partitioning (RMSE: 0.402-0.547). Multispectral imaging sensor appeared to be efficient for the rapid assessment of the microbiological quality of fish fillets for all the different cases evaluated.

2.
Food Res Int ; 178: 113980, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38309883

ABSTRACT

Incorporation of two sesame cake preparations, differing in fat, 11 % (LF) and 17 % (HF), and protein, 51 % (LF) and 44 % (HF), contents, respectively, into breads at 6, 12 and 20 % wheat flour substitution levels, led to enriched end-products with antioxidants, suitable also to carry the 'high protein' and 'fiber source' nutrition claims (at ≥ 12 % substitution level). Sesame cake decreased wheat dough resistance to mixing and extension, and peak viscosity (empirical rheology), in a concentration-dependent manner, being more pronounced for LF formulations. Breads with LF incorporation ≥ 12 % had lower specific volumes and harder crumb (texture analysis) throughout storage, than control (100 % wheat flour); however, such adverse effects were diminished in HF bread formulations due to the plasticizing and emulsifying action of the sesame cake fat. Calorimetry showed that the sesame cake had no effect on starch retrogradation, but enhanced amylose-lipid complex formation. Antioxidant activity (ABTS, DPPH and FRAP assays), and phenolic acids (ferulic, p-coumaric and sinapic) and lignan (sesaminol glucosides and sesamolin) contents, determined by HPLC-DAD-MS, were higher in LF breads than their HF counterparts. The presence of some sulfur (off-flavor) and pyrazine (nutty flavor) compounds (SPME-GC-MS), as well as the sesame flavor and bitterness (sensory analysis) were of higher intensity in HF breads, while the 6 % LF product received the highest overall acceptability score among all fortified products. Overall, the sesame cake can be a promising ingredient for production of functional wheat bread depending on its composition and fortification level.


Subject(s)
Antioxidants , Sesamum , Antioxidants/analysis , Bread/analysis , Triticum/chemistry , Flour/analysis
3.
Food Chem ; 440: 138184, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38100963

ABSTRACT

Rapid assessment of microbiological quality (i.e., Total Aerobic Counts, TAC) and authentication (i.e., fresh vs frozen/thawed) of meat was investigated using spectroscopic-based methods. Data were collected throughout storage experiments from different conditions. In total 526 spectra (Fourier transform infrared, FTIR) and 534 multispectral images (MSI) were acquired. Partial Least Squares (PLS) was applied to select/transform the variables. In the case of FTIR data 30 % of the initial features were used, while for MSI-based models all features were employed. Subsequently, Support Vector Machines (SVM) regression/classification models were developed and evaluated. The performance of the models was evaluated based on the external validation set. In both cases MSI-based models (Root Mean Square Error, RMSE: 0.48-1.08, Accuracy: 91-97 %) were slightly better compared to FTIR (RMSE: 0.83-1.31, Accuracy: 88-94 %). The most informative features of FTIR for the case of quality were mainly in 900-1700 cm-1, while for fraud the features were more dispersed.


Subject(s)
Fraud , Meat , Spectroscopy, Fourier Transform Infrared/methods , Fourier Analysis , Meat/microbiology , Least-Squares Analysis
4.
Foods ; 12(21)2023 Nov 02.
Article in English | MEDLINE | ID: mdl-37959126

ABSTRACT

The influence of incorporation of post-distillation solid wastes of the aromatic plants (SWAP), oregano, rosemary, lemon balm, and spearmint into wheat breads at 1% and 2% levels on their physicochemical and sensorial properties, and antioxidant and volatile profiles were investigated. SWAP breads had darker crumbs and crust and greener crumbs compared to the control, but rather similar loaf specific volume and textural attributes (crust puncture test and crumb Texture Profile Analysis). Although the mold growth on bread crumb surface was not inhibited by SWAP presence, LC-DAD-MS revealed a large increase in terpenoids, like carnosic acid (all SWAP), carnosol (rosemary) and carvacrol (oregano), phenolic (rosmarinic and salvianolic) acids and flavonoids in bread with SWAP inclusion, leading to enhanced antioxidant capacity (ABST, DPPH and FRAP assays). The distinct aromatic plant flavors were detected in the fortified breads by trained assessors and confirmed by SPME-GC/MS volatile analysis, showing high levels of terpenoids in SWAP breads, like carvacrol (oregano), caryophyllene (rosemary and lemon balm), and carvone (spearmint), and rendering the 2% fortification unacceptable by consumers. Nevertheless, breads with 1% oregano or rosemary waste had similar control overall acceptability scores, indicating that SWAP can be a promising ingredient for developing antioxidant-enriched wheat breads.

5.
Sensors (Basel) ; 22(18)2022 Sep 16.
Article in English | MEDLINE | ID: mdl-36146366

ABSTRACT

The expansion of the seaweed aquaculture sector along with the rapid deterioration of these products escalates the importance of implementing rapid, real-time techniques for their quality assessment. Seaweed samples originating from Scotland and Ireland were stored under various temperature conditions for specific time intervals. Microbiological analysis was performed throughout storage to assess the total viable counts (TVC), while in parallel FT-IR spectroscopy, multispectral imaging (MSI) and electronic nose (e-nose) analyses were conducted. Machine learning models (partial least square regression (PLS-R)) were developed to assess any correlations between sensor and microbiological data. Microbial counts ranged from 1.8 to 9.5 log CFU/g, while the microbial growth rate was affected by origin, harvest year and storage temperature. The models developed using FT-IR data indicated a good prediction performance on the external test dataset. The model developed by combining data from both origins resulted in satisfactory prediction performance, exhibiting enhanced robustness from being origin unaware towards microbiological population prediction. The results of the model developed with the MSI data indicated a relatively good prediction performance on the external test dataset in spite of the high RMSE values, whereas while using e-nose data from both MI and SAMS, a poor prediction performance of the model was reported.


Subject(s)
Food Microbiology , Seaweed , Colony Count, Microbial , Humans , Least-Squares Analysis , Spectroscopy, Fourier Transform Infrared/methods
6.
Sensors (Basel) ; 22(7)2022 Apr 06.
Article in English | MEDLINE | ID: mdl-35408414

ABSTRACT

Unsafe food is estimated to cause 600 million cases of foodborne disease, annually. Thus, the development of methods that could assist in the prevention of foodborne diseases is of high interest. This review summarizes the recent progress toward rapid microbial assessment through (i) spectroscopic techniques, (ii) spectral imaging techniques, (iii) biosensors and (iv) sensors designed to mimic human senses. These methods often produce complex and high-dimensional data that cannot be analyzed with conventional statistical methods. Multivariate statistics and machine learning approaches seemed to be valuable for these methods so as to "translate" measurements to microbial estimations. However, a great proportion of the models reported in the literature misuse these approaches, which may lead to models with low predictive power under generic conditions. Overall, all the methods showed great potential for rapid microbial assessment. Biosensors are closer to wide-scale implementation followed by spectroscopic techniques and then by spectral imaging techniques and sensors designed to mimic human senses.


Subject(s)
Biosensing Techniques , Foodborne Diseases , Biosensing Techniques/methods , Food , Food Microbiology , Food Safety , Foodborne Diseases/diagnosis , Foodborne Diseases/prevention & control , Humans
7.
Foods ; 10(9)2021 Sep 17.
Article in English | MEDLINE | ID: mdl-34574321

ABSTRACT

Within Europe over the last 10 years, there has been an increase in seaweeds cultivated for human consumption. For food safety reasons, it is important to assess the microbiological and nutritional quality of the biomass. The fresh and dried edible seaweeds Alaria esculenta and Saccharina latissima were assessed over two consecutive years for the presence of microorganisms. Seaweed samples supplied from Scotland were stored under isothermal conditions for specific time intervals depending on the sample's condition (fresh, dried or rehydrated). During storage, microbiological analyses were performed for the enumeration of Total Viable Counts (TVC), Pseudomonas spp., Enterobacteriaceae and Bacillus spp., as well as yeasts and molds. Additionally, bacterial colonies from the Marine Agar growth medium were isolated and subjected to PCR-RAPD analysis for characterization of the bacterial diversity of seaweeds. Bacterial isolates with different fingerprint patterns were further subjected to sequencing (16S rDNA, V1-V4 region). The presence of human pathogenic bacteria was also investigated. Results showed that the initial population of TVC was differentiated depending on the year of seaweed harvest, being closer to the enumeration limit (1.0 log CFU/g) in fresh samples from 2020 and higher in samples from 2019 (6.7 and 3.9 log CFU/g in A. esculenta and S. latissima, respectively). DNA-based analysis revealed the presence of Psychrobacter, Cobetia and Pseudomonas species in A. esculenta, while Psychrobacter and Micrococcus species were present in S. latissima.

8.
Int J Food Microbiol ; 320: 108506, 2020 May 02.
Article in English | MEDLINE | ID: mdl-31981852

ABSTRACT

The prevalence of three pathogens in marinated chicken products and the evaluation of their quality by microbiological and sensory analysis were assessed. Eighty (80) samples obtained from several meat retail markets in Greece were analyzed for the presence of Campylobacter spp., Salmonella and Listeria monocytogenes. Concerning Campylobacter, rep-PCR and species specific PCR were applied for the differentiation and identification of isolates, respectively. The samples were subsequently stored aerobically at 4 °C for 5 days. Microbiological analysis, sensory assessment and HPLC analysis were carried out for the evaluation of spoilage microorganisms, sensory quality and the presence of preservatives (potassium sorbate and sodium benzoate). Τhe prevalence of Campylobacter spp., Salmonella, and Listeria monocytogenes was 50%, 11% and 44%, respectively. In the case of Campylobacter, from a total of 40 isolates, 27 were identified as Campylobacter coli, 4 as Campylobacter jejuni, whereas the remaining 9 belonged to unidentified Campylobacter species. Pseudomonas spp. was the dominant spoilage microbial genus in 43% of the samples, while in 31% of them a co-dominance of Pseudomonas spp. and Brochothrix thermosphacta was observed. Total aerobic counts increased to 7.0 log CFU/g at the 1st, 2nd or 3rd day of storage in 71% of the samples, while sensory analysis showed that 80% of the samples were characterized as spoiled after 3, 4 or 5 days. The presence of preservatives was confirmed in 31% of the samples and slightly affected the microbiological profile. In conclusion, the obtained data demonstrated the occurrence of foodborne pathogens and allowed the acquisition of an overall view about the microbiological quality of marinated chicken products.


Subject(s)
Bacteria/isolation & purification , Food Microbiology , Poultry Products/microbiology , Animals , Bacteria/classification , Bacteria/genetics , Campylobacter/isolation & purification , Chickens/microbiology , Colony Count, Microbial , Food Preservatives/analysis , Greece , Poultry Products/analysis
9.
Int J Food Microbiol ; 299: 47-57, 2019 Jun 16.
Article in English | MEDLINE | ID: mdl-30953995

ABSTRACT

The aim of this work was to study the influence of lemon and vinegar marinades on Salmonella inoculated on chicken fillets and stored under different storage temperatures for nine days in the presence of indigenous microbiota. In addition to this, model development for the determination of the inactivation boundaries and the prediction of pathogens response was attempted. The different acid concentrations in the marinades, the type of acid, the storage temperature as well as the duration of storage impacted the levels of pathogens and background flora. The higher tested concentrations (2% and 4% v/v for acetic and citric acid) were more effective against Salmonella and spoilage microorganisms than the lower ones (0.5 and 1% v/v for acetic and citric acid), while the intermediate concentrations (1, 1.5 and 2, 3% v/v for acetic and citric acid, respectively) presented differentiations of particular interest to the microbial responses to acidic stress. The aforementioned parameters also differentiated Salmonella serovars persistence and spoilage microorganisms dominance. Regarding model development, the probability of inactivation of Salmonella was satisfactorily predicted particularly in the case of acetic acid marination while in model validation, the majority of the vinegar marinated samples were correctly classified, whereas, in case of lemon marination, a higher number of misclassifications was observed, indicating a partial weakness of the model to predict the pathogens response at interface concentrations.


Subject(s)
Food Microbiology , Meat/microbiology , Microbial Viability , Salmonella/physiology , Temperature , Acids/pharmacology , Animals , Chickens , Colony Count, Microbial , Microbial Viability/drug effects , Salmonella/drug effects , Salmonella/growth & development , Time Factors
10.
Int J Food Microbiol ; 267: 42-53, 2018 Feb 21.
Article in English | MEDLINE | ID: mdl-29288907

ABSTRACT

Pomegranate juice is a product with enhanced functional properties that could be used as an alternative to traditional marination ingredients and effectively retard microbial growth along with providing an improved sensory result. In this study, two pomegranate based marinades were prepared for the marination of chicken breast fillets and the marinated samples were aerobically stored at 4 and 10°C for 9days. Raw, non-marinated chicken samples were used as control. Levels of total viable counts (TVC), Pseudomonas spp., Brochothrix thermosphacta, Enterobacteriaceae and lactic acid bacteria (LAB) were determined together with sensory assessment to evaluate the evolution of spoilage. The profile of organic acids and volatile compounds was also analyzed during storage. The shelf life of marinated samples was significantly extended compared to control samples at both storage temperatures (e.g., up to 5 and 6days for the pomegranate/lemon marinated samples stored at 4 and 10°C, respectively) as evaluated by both microbiological and sensory analyses. The profile of the organic acids and the volatilome of marinated and control samples were remarkably differentiated according to storage time, microbial load and sensory score. The findings of this study suggest that pomegranate juice could be used as a novel ingredient in marinades to improve the sensory attributes, while prolonging the shelf life of chicken meat.


Subject(s)
Food Preservation/standards , Lythraceae/chemistry , Meat/microbiology , Metabolome , Animals , Bacteria/genetics , Bacterial Physiological Phenomena , Chickens , Colony Count, Microbial , Food Storage/standards , Humans , Meat/analysis , Meat/standards , Metabolomics , Temperature , Volatile Organic Compounds/analysis
11.
Food Microbiol ; 66: 141-149, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28576362

ABSTRACT

Five different marinades were prepared containing lemon juice, apple cider vinegar, pomegranate juice and combinations of them. Three different temperatures (4, 10, and 20 °C) and five marinating time intervals (1, 3, 6, and 9 h) were tested. Microbial, physicochemical as well as sensory analyses were performed to assess marination. Noticeable microbial reductions and satisfactory sensory results were observed only in samples treated for short time (1 and 3 h). The marinade in which pomegranate and lemon juices were combined caused a decrease in microbial counts and led to desirable sensory attributes. Each of the marinades was characterized by a distinguishable organic acid profile, while the discrimination of the samples, based on organic acid concentration, between low (1 and 3) and high (6 and 9) marinating time was feasible. It can be concluded that marinating time affected the indigenous microbiota and the sensory characteristics of chicken meat while pomegranate could be a promising marinating ingredient from a microbiological and physicochemical perspective.


Subject(s)
Food Handling/methods , Meat/analysis , Acids/analysis , Animals , Bacteria/genetics , Bacteria/growth & development , Bacteria/isolation & purification , Chickens , Meat/microbiology , Metabolomics , Taste
13.
Food Microbiol ; 55: 25-31, 2016 May.
Article in English | MEDLINE | ID: mdl-26742613

ABSTRACT

The aim of this study was the development of a model to describe the growth kinetics of aerobic microbial population of chicken breast fillets marinated in pomegranate juice under isothermal and dynamic temperature conditions. Moreover, the effect of pomegranate juice on the extension of the shelf life of the product was investigated. Samples (10 g) of chicken breast fillets were immersed in marinades containing pomegranate juice for 3 h at 4 °C following storage under aerobic conditions at 4, 10, and 15 °C for 10 days. Total Viable Counts (TVC), Pseudomonas spp and lactic acid bacteria (LAB) were enumerated, in parallel with sensory assessment (odor and overall appearance) of marinated and non-marinated samples. The Baranyi model was fitted to the growth data of TVC to calculate the maximum specific growth rate (µmax) that was further modeled as a function of temperature using a square root-type model. The validation of the model was conducted under dynamic temperature conditions based on two fluctuating temperature scenarios with periodic changes from 6 to 13 °C. The shelf life was determined both mathematically and with sensory assessment and its temperature dependence was modeled by an Arrhenius type equation. Results showed that the µmax of TVC of marinated samples was significantly lower compared to control samples regardless temperature, while under dynamic temperature conditions the model satisfactorily predicted the growth of TVC in both control and marinated samples. The shelf-life of marinated samples was significantly extended compared to the control (5 days extension at 4 °C). The calculated activation energies (Ea), 82 and 52 kJ/mol for control and marinated samples, respectively, indicated higher temperature dependence of the shelf life of control samples compared to marinated ones. The present results indicated that pomegranate juice could be used as an alternative ingredient in marinades to prolong the shelf life of chicken.


Subject(s)
Bacteria/growth & development , Food Preservation/methods , Lythraceae/chemistry , Meat/microbiology , Animals , Bacteria/chemistry , Bacteria/isolation & purification , Bacteria/metabolism , Chickens , Colony Count, Microbial , Female , Food Preservation/instrumentation , Humans , Kinetics , Male , Meat/analysis , Models, Biological , Taste , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...