Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 14(1): 8398, 2023 Dec 18.
Article in English | MEDLINE | ID: mdl-38110357

ABSTRACT

The spread of many infectious diseases relies on aerosol transmission to the respiratory tract. Here we design an intranasal mask comprising a positively-charged thermosensitive hydrogel and cell-derived micro-sized vesicles with a specific viral receptor. We show that the positively charged hydrogel intercepts negatively charged viral aerosols, while the viral receptor on vesicles mediates the entrapment of viruses for inactivation. We demonstrate that when displaying matched viral receptors, the intranasal masks protect the nasal cavity and lung of mice from either severe acute respiratory syndrome coronavirus 2 or influenza A virus. With computerized tomography images of human nasal cavity, we further conduct computational fluid dynamics simulation and three-dimensional printing of an anatomically accurate human nasal cavity, which is connected to human lung organoids to generate a human respiratory tract model. Both simulative and experimental results support the suitability of intranasal masks in humans, as the likelihood of viral respiratory infections induced by different variant strains is dramatically reduced.


Subject(s)
Respiratory Aerosols and Droplets , Virus Diseases , Humans , Animals , Mice , Respiratory System , Administration, Intranasal , Hydrogels , Aerosols
2.
Adv Healthc Mater ; 12(30): e2301592, 2023 12.
Article in English | MEDLINE | ID: mdl-37681300

ABSTRACT

Inhibition of oxidative stress and inflammatory responses caused by secondary injury following traumatic spinal cord injury (SCI) is an attractive strategy in treating traumatic SCI. However, the efficacy of drugs is severely limited owing to the poor penetration of the blood spinal cord barrier (BSCB). Here, inspired by cell chemotaxis and related chemokines production at the lesion sites of SCI, the microglial membrane is selected to construct a drug delivery system with the ability to cross the BSCB and target the lesions. PR@MM is prepared based on the assembly of polylactic-co-glycolic acid (PLGA) and resveratrol (RSV) followed by microglial membrane (MM) coating. Compared to that of the uncoated nanoparticles, the enrichment of PR@MM at the lesion sites of SCI increases, which is beneficial to achieve lesion targeting of RSV and exert therapeutic functions. Both in vitro and in vivo experiments demonstrate that PR@MM has the ability to scavenge reactive oxygen species and anti-inflammatory effects, which ultimately promotes the recovery of locomotory function after SCI. Therefore, this microglial membrane-based drug delivery system provides a promising biomimetic nanomedicine for targeted therapy for SCI.


Subject(s)
Neuroprotective Agents , Spinal Cord Injuries , Humans , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Microglia/pathology , Biomimetics , Spinal Cord Injuries/drug therapy , Spinal Cord Injuries/pathology , Spinal Cord/pathology
3.
J Am Chem Soc ; 144(40): 18387-18396, 2022 10 12.
Article in English | MEDLINE | ID: mdl-36178288

ABSTRACT

Bioconjugation is a powerful protein modification strategy to improve protein properties. Herein, we report mechano-bioconjugation as a novel approach to empower fusion protein therapeutics and demonstrate its utility by a protein heterocatenane (cat-IFN-ABD) containing interferon-α2b (IFN) mechanically interlocked with a consensus albumin-binding domain (ABD). The conjugate was selectively synthesized in cellulo following a cascade of post-translational events using a pair of heterodimerizing p53dim variants and two orthogonal split-intein reactions. The catenane topology was proven by combined techniques of LC-MS, SDS-PAGE, SEC, and controlled proteolytic digestion. Not only did cat-IFN-ABD retain activities comparable to those of the wild-type IFN and ABD, the conjugate also exhibited enhanced aggregation resistance and prolonged circulation time over the simple linear and cyclic fusions. Consequently, cat-IFN-ABD potently inhibited tumor growth in the mouse xenograft model. Therefore, mechano-bioconjugation by catenation accomplishes function integration with additional benefits, providing an alternative pathway for developing advanced protein therapeutics.


Subject(s)
Catenanes , Serum Albumin , Animals , Humans , Interferon-alpha/chemistry , Mice , Power, Psychological , Protein Binding , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/pharmacology , Recombinant Fusion Proteins/therapeutic use , Serum Albumin/chemistry
4.
Nat Commun ; 13(1): 4214, 2022 07 21.
Article in English | MEDLINE | ID: mdl-35864093

ABSTRACT

Glioblastoma multiforme (GBM) is an aggressive brain cancer with a poor prognosis and few treatment options. Here, building on the observation of elevated lactate (LA) in resected GBM, we develop biomimetic therapeutic nanoparticles (NPs) that deliver agents for LA metabolism-based synergistic therapy. Because our self-assembling NPs are encapsulated in membranes derived from glioma cells, they readily penetrate the blood-brain barrier and target GBM through homotypic recognition. After reaching the tumors, lactate oxidase in the NPs converts LA into pyruvic acid (PA) and hydrogen peroxide (H2O2). The PA inhibits cancer cell growth by blocking histones expression and inducing cell-cycle arrest. In parallel, the H2O2 reacts with the delivered bis[2,4,5-trichloro-6-(pentyloxycarbonyl)phenyl] oxalate to release energy, which is used by the co-delivered photosensitizer chlorin e6 for the generation of cytotoxic singlet oxygen to kill glioma cells. Such a synergism ensures strong therapeutic effects against both glioma cell-line derived and patient-derived xenograft models.


Subject(s)
Brain Neoplasms , Glioblastoma , Glioma , Nanoparticles , Biomimetics , Brain Neoplasms/drug therapy , Brain Neoplasms/pathology , Cell Line, Tumor , Glioblastoma/drug therapy , Glioblastoma/pathology , Humans , Hydrogen Peroxide
5.
Sci Transl Med ; 13(615): eabb6981, 2021 Oct 13.
Article in English | MEDLINE | ID: mdl-34644149

ABSTRACT

Despite multiple immunotherapeutic technologies that achieve potent T cell activation, effector T cells still lack efficiency because of the highly immunosuppressive conditions in the tumor microenvironment. Inspired by recent advances in nano-sized secreted vesicles known as exosomes as therapeutic agents and research revealing that circulating cancer cells have a "homing" capacity to return to the main tumor sites, we generated macrophage-tumor hybrid cells. We introduced nuclei isolated from tumor cells into activated M1-like macrophages to produce chimeric exosomes (aMT-exos). The aMT-exos were able to accumulate in both lymph nodes and diverse tumors of xenograft mice. They entered lymph nodes and primed T cell activation in both the classical antigen-presenting cell­induced immunostimulatory manner and a unique "direct exosome interaction" manner. aMT-exos also had strong "homing behavior" to tumor sites, where they ameliorated immunosuppression. They were effective in inducing tumor regression and extending survival in primary mouse models of lymphoma and breast and melanoma cancers. In addition, when combined with anti­programmed death 1 (a-PD1) treatment, aMT-exos were able to extend survival of metastatic and postsurgical tumor recurrence mouse models. Such a coactivation of the immune response and the tumor microenvironment enabled aMT-exos to confer efficient inhibition of primary tumors, tumor metastases, and postoperative tumor recurrence for personalized immunotherapy, which warrants further exploration in the clinical setting.


Subject(s)
Exosomes , Neoplasms , Humans , Immunity , Lymph Nodes , Macrophages , Tumor Microenvironment
6.
Sci Adv ; 7(6)2021 02.
Article in English | MEDLINE | ID: mdl-33547068

ABSTRACT

The poor understanding of the complex multistep process taken by nanocarriers during the delivery process limits the delivery efficiencies and further hinders the translation of these systems into medicine. Here, we describe a series of six self-assembled nanocarrier types with systematically altered physical properties including size, shape, and rigidity, as well as both in vitro and in vivo analyses of their performance in blood circulation, tumor penetration, cancer cell uptake, and anticancer efficacy. We also developed both data and simulation-based models for understanding the influence of physical properties, both individually and considered together, on each delivery step and overall delivery process. Thus, beyond finding that nanocarriers that are simultaneously endowed with tubular shape, short length, and low rigidity outperformed the other types, we now have a suit of theoretical models that can predict how nanocarrier properties will individually and collectively perform in the multistep delivery of anticancer therapies.

7.
Adv Mater ; 32(47): e2002085, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33015871

ABSTRACT

The highly immunosuppressive tumor microenvironment (TME) in solid tumors often dampens the efficacy of immunotherapy. In this study, bacterial outer membrane vesicles (OMVs) are demonstrated as powerful immunostimulants for TME reprogramming. To overcome the obstacles of antibody-dependent clearance and high toxicity induced by OMVs upon intravenous injection (a classic clinically relevant delivery mode), calcium phosphate (CaP) shells are employed to cover the surface of OMVs, which enables potent OMV-based TME reprograming without side effects. Meanwhile, the pH-sensitive CaP shells facilitate the neutralization of acidic TME, leading to highly beneficial M2-to-M1 polarization of macrophages for improved antitumor effect. Moreover, the outer shells can be integrated with functional components like folic acid or photosensitizer agents, which facilitates the use of the OMV-based platform in combination therapies for a synergic therapeutic effect.


Subject(s)
Adjuvants, Immunologic/pharmacology , Bacterial Outer Membrane/metabolism , Biomineralization , Extracellular Vesicles/metabolism , Immunotherapy/methods , Safety , Tumor Microenvironment/immunology , Macrophages/drug effects , Macrophages/immunology
8.
Adv Mater ; 32(33): e2003563, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32627937

ABSTRACT

Nanozyme-based tumor catalytic therapy has attracted widespread attention in recent years. However, its therapeutic outcomes are diminished by many factors in the tumor microenvironment (TME), such as insufficient endogenous hydrogen peroxide (H2 O2 ) concentration, hypoxia, and immunosuppressive microenvironment. Herein, an immunomodulation-enhanced nanozyme-based tumor catalytic therapy strategy is first proposed to achieve the synergism between nanozymes and TME regulation. TGF-ß inhibitor (TI)-loaded PEGylated iron manganese silicate nanoparticles (IMSN) (named as IMSN-PEG-TI) are constructed to trigger the therapeutic modality. The results show that IMSN nanozyme exhibits both intrinsic peroxidase-like and catalase-like activities under acidic TME, which can decompose H2 O2 into hydroxyl radicals (•OH) and oxygen (O2 ), respectively. Besides, it is demonstrated that both IMSN and TI can regulate the tumor immune microenvironment, resulting in macrophage polarization from M2 to M1, and thus inducing the regeneration of H2 O2 , which can promote catalytic activities of IMSN nanozyme. The potent antitumor effect of IMSN-PEG-TI is proved by in vitro multicellular tumor spheroids (MCTS) and in vivo CT26-tumor-bearing mice models. It is believed that the immunomodulation-enhanced nanozyme-based tumor treatment strategy is a promising tool to kill cancer cells.


Subject(s)
Biocatalysis , Biomimetic Materials/pharmacology , Enzymes/metabolism , Immunomodulation/drug effects , Nanomedicine , Nanostructures/chemistry , Animals , Biomimetic Materials/chemistry , Cell Line, Tumor , Humans , Mice , Tumor Microenvironment/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...