Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biol Macromol ; 266(Pt 1): 131245, 2024 May.
Article in English | MEDLINE | ID: mdl-38554922

ABSTRACT

Plant polysaccharides, distinguished by diverse glycosidic bonds and various cyclic sugar units, constitute a subclass of primary metabolites ubiquitously found in nature. Contrary to common understanding, plant polysaccharides typically form hydrocolloids upon dissolution in water, even though both excessively high and low temperatures impede this process. Bletilla striata polysaccharides (BSP), chosen for this kinetic study due to their regular repeating units, help elucidate the relationship between polysaccharide gelation and temperature. It is suggested that elevated temperatures enhance the mobility of BSP molecular chains, resulting in a notable acceleration of hydrogen bond breakage between BSP and water molecules and consequently, compromising the conformational stability of BSPs to some extent. This study unveils the unique relationship between polysaccharide dissolution processes and temperature from a kinetics perspective. Consequently, the conclusion provides a dynamical basis for comprehending the extraction and preparation of natural plant polysaccharide hydrocolloids, pharmaceuticals and related fields.


Subject(s)
Colloids , Molecular Dynamics Simulation , Orchidaceae , Polysaccharides , Polysaccharides/chemistry , Colloids/chemistry , Orchidaceae/chemistry , Temperature , Water/chemistry , Kinetics , Hydrogen Bonding
2.
Arab J Chem ; 15(7): 103916, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35462797

ABSTRACT

Since the outbreak of COVID-19, this virus has been constantly mutating. The latest mutant Omicron has been identified as VOC by WHO. The main reason for its concern is the mutation of 46 amino acids in spike protein, which has brought the global epidemic prevention into another difficulty. Herbal aromatic plant Amomum tsao-ko was excavated from formula 1 and 2 for the treatment of COVID-19 in China, and its active components were extracted and identified. Molecular dynamics simulation and Fpocket were applied to find the key sites on RBDOmicron, and molecular docking was also used to reveal the interaction between A. tsao-ko essential oil (AEO) and RBDOmicron. The AEO components were analyzed and identified by GC/Q-TOF MS. There were 20 kinds of AEO with a relative area percentage of more than 1%, and they were related to the three active centres of RBDOmicron. In this study, virtual screening was used to mine the essential oil components of medicinal plants, and it was found that the components could interact with the spike protein RBD in aerosol to block the interaction of RBD and hACE2, thus cutting off the transmission route and protecting the host. This study has certain guiding significance in the modernization of Traditional Chinese medicine and the prevention of COVID-19.

SELECTION OF CITATIONS
SEARCH DETAIL
...