Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Mater ; 36(2): e2310699, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37967925

ABSTRACT

Correlated single-atom catalysts (c-SACs) with tailored intersite metal-metal interactions are superior to conventional catalysts with isolated metal sites. However, precise quantification of the single-atomic interdistance (SAD) in c-SACs is not yet achieved, which is essential for a crucial understanding and remarkable improvement of the correlated metal-site-governed catalytic reaction kinetics. Here, three Ru c-SACs are fabricated with precise SAD using a planar organometallic molecular design and π-π molecule-carbon nanotube confinement. This strategy results in graded SAD from 2.4 to 9.3 Å in the Ru c-SACs, wherein tailoring the Ru SAD into 7.0 Å generates an exceptionally high turnover frequency of 17.92 H2 s-1 and a remarkable mass activity of 100.4 A mg-1 under 50 and 100 mV overpotentials, respectively, which is superior to all the Ru-based catalysts reported previously. Furthermore, density functional theory calculations confirm that Ru SAD has a negative correlation with its d-band center owing to the long-range interactions induced by distinct local atomic geometries, resulting in an appropriate electrostatic potential and the highest catalytic activity on c-SACs with 7.0 Å Ru SAD. The present study promises an attractive methodology for experimentally quantifying the metal SAD to provide valuable insights into the catalytic mechanism of c-SACs.

2.
Nature ; 606(7914): 550-556, 2022 06.
Article in English | MEDLINE | ID: mdl-35545672

ABSTRACT

Animals constantly receive various sensory stimuli, such as odours, sounds, light and touch, from the surrounding environment. These sensory inputs are essential for animals to search for food and avoid predators, but they also affect their physiological status, and may cause diseases such as cancer. Malignant gliomas-the most lethal form of brain tumour1-are known to intimately communicate with neurons at the cellular level2,3. However, it remains unclear whether external sensory stimuli can directly affect the development of malignant glioma under normal living conditions. Here we show that olfaction can directly regulate gliomagenesis. In an autochthonous mouse model that recapitulates adult gliomagenesis4-6 originating in oligodendrocyte precursor cells (OPCs), gliomas preferentially emerge in the olfactory bulb-the first relay of brain olfactory circuitry. Manipulating the activity of olfactory receptor neurons (ORNs) affects the development of glioma. Mechanistically, olfaction excites mitral and tufted (M/T) cells, which receive sensory information from ORNs and release insulin-like growth factor 1 (IGF1) in an activity-dependent manner. Specific knockout of Igf1 in M/T cells suppresses gliomagenesis. In addition, knocking out the IGF1 receptor in pre-cancerous mutant OPCs abolishes the ORN-activity-dependent mitogenic effects. Our findings establish a link between sensory experience and gliomagenesis through their corresponding sensory neuronal circuits.


Subject(s)
Carcinogenesis , Glioma , Insulin-Like Growth Factor I , Olfactory Receptor Neurons , Smell , Animals , Glioma/metabolism , Glioma/pathology , Mice , Neural Pathways , Olfactory Bulb/pathology , Olfactory Receptor Neurons/physiology , Smell/physiology
3.
Small ; 17(38): e2102915, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34365725

ABSTRACT

Materials with alloying reactions have significant potential as electrodes for lithium-ion batteries (LIBs) due to its high theoretical capacity and appropriate lithiation potentials. Nonetheless, their cycling performance is inferior due to violent volume expansion and severe pulverization of active materials. Herein, solid solution of Bi0.5 Sb0.5 encapsulated with carbon is discovered to enable consecutive alloying reactions with manageable volume change, suitable for developing LIBs with high capacity and robust cyclability. A Sb-rich shell and Bi-rich core structure is formed in cycling since the alloying reaction between Sb and Li occurs first, followed by the alloying reaction between Bi and Li. Such a consecutive alloying reaction obeying the thermodynamic path is experimentally realized by the carbon capsulation, which acts as a protecting solid layer to avoid polarized reactions occurred when exposed directly to liquid electrolyte. The LIBs using Bi0.5 Sb0.5 @carbon run on the consecutive alloying reactions exhibits high capacity, prolonged lifespan (489.4 mAh g-1 after 2000 cycles at 1 A g-1 ) and fast kinetic, while those using bare Bi0.5 Sb0.5 suffer from worsened kinetic and thus a poor cycling performance owning to the polarized reactions. The work paves a way of developing alloy electrodes for alkaline-ion rechargeable batteries with potential industry applications.

4.
ACS Appl Mater Interfaces ; 13(28): 33644-33651, 2021 Jul 21.
Article in English | MEDLINE | ID: mdl-34235918

ABSTRACT

Manganese oxides are attracting great interest owing to their rich polymorphism and multiple valent states, which give rise to a wide range of applications in catalysis, capacitors, ion batteries, and so forth. Most of their functionalities are connected to transitions among the various polymorphisms and Mn valences. However, their atomic-scale dynamics is still a great challenge. Herein, we discovered a strong heterogeneity in the crystalline structure and defects, as well as in the Mn valence state. The transitions are studied by in situ transmission electron microscopy (TEM), and they involve a complex ordering of [MnO6] octahedra as the basic building tunnels. MnO2 nanowires synthesized using solution-based hydrothermal methods usually exhibit a large number of multiple polymorphism impurities with different tunnel sizes. Upon heating, MnO2 nanowires undergo a series of stoichiometric polymorphism changes, followed by oxygen release toward an oxygen-deficient spinel and rock-salt phase. The impurity polymorphism exhibits an abnormally high stability with interesting small-large-small tunnel size transition, which is attributed to a preferential stabilizer (K+) concentration, as well as a strong competition of kinetics and thermodynamics. Our results unveil the complicated intergrowth of polymorphism impurities in MnO2, which provide insights into the heterogeneous kinetics, thermodynamics, and transport properties of the tunnel-based building blocks.

SELECTION OF CITATIONS
SEARCH DETAIL
...