Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 6(35): 22866-22875, 2021 Sep 07.
Article in English | MEDLINE | ID: mdl-34514258

ABSTRACT

To improve the condensed-phase reaction rate of ε-CL-20, polydopamine (PDA)-nickel complex-coated multiwalled carbon nanotubes (CNTs) have been prepared and used as combustion catalysts. The PDA-Ni complex has been prepared and in situ coprecipitated with ε-CL-20 by an antisolvent crystallization process in its dimethyl sulfoxide (DMSO) solution. It has been shown that crystalline CL-20 composites included with PDA-Ni complexes are polygon-shaped with a smooth surface and an average diameter of 10-15 µm, whereas it is 140 µm for raw ε-CL-20 crystals. The catalytic reactivity of the complex on thermolysis of CL-20 has been investigated using the differential scanning calorimetry (DSC) and thermogravimetry (TG)-coupled Fourier transform infrared (FT-IR) spectroscopy technique. It has been found that CNT@PDA-Ni complexes have catalytic effects on the decomposition of ε-CL-20 by decreasing/shifting of the exothermic peak from T p = 240.1 to 238.7 °C. The FT-IR spectra of CL-20 decomposition products under the effect of the catalyst predominantly show peaks at 1274, 1644 and 1596, 1912, 2265, and 1956-1800 cm-1, indicating the presence of fragments with N2O, NO2, NO, HNCO, and NO/CO, respectively. The change in the ε-CL-20 decomposition mechanism should be attributed to the catalytic action of CNT, decreasing the formation of NO2. Also, under the effect of the carbon-based catalyst, the HNCO formation was detected at another temperature in comparison with raw CL-20, with peak absorption at 224.1 vs 232.3 °C and the evolution was completed at 250.8 vs 246.2 °C, respectively.

2.
Nanomaterials (Basel) ; 9(5)2019 May 24.
Article in English | MEDLINE | ID: mdl-31137752

ABSTRACT

A quantitative evaluation method has been developed to study the effects of nanoadditives on thermal decomposition mechanisms of energetic compounds using the conventional thermogravimetry coupled with mass spectrometry (TG/MS) technique. The decomposition of ammonium perchlorate (AP) under the effect of several energetic catalysts has been investigated as a demonstration. In particular, these catalysts are transition metal (Cu2+, Co2+ and Ni2+) complexes of triaminoguanidine (TAG), using graphene oxide (GO) as dopant. They have been well-compared in terms of their catalytic effects on the concentration of the released gaseous products of AP. These detailed quantitative analyses of the gaseous products of AP provide a proof that the proton transfer between O and O2 determines the catalytic decomposition pathways, which largely depend on the type of reactive centers of the catalysts. This quantitative method could be applied to evaluate the catalytic effects of any other additives on the thermal decomposition of various energetic compounds.

SELECTION OF CITATIONS
SEARCH DETAIL
...