Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Ying Yong Sheng Tai Xue Bao ; 33(9): 2388-2396, 2022 Sep.
Article in Chinese | MEDLINE | ID: mdl-36131654

ABSTRACT

Chinese fir (Cunninghamia lanceolata) plantation is a dominant forest type and carbon sink in the subtropical region in China. An experiment with simulated nitrogen deposition (addition of 40 kg N·hm-2·a-1) and drought (50% of precipitation exclusion, PE) was established in Chinese fir plantation in 2018. Soil samples (0-15 cm) were collected in summer (July 2020) and winter (January 2021). Soil microbial biomass, colony forming units (CFUs) and carbon source utilization were determined through phospholipid fatty acids (PLFAs), plate count, and Biolog methods, respectively. The results showed significant seasonal variations of PLFAs-related microbial biomass and composition. Soil bacterial and fungal CFUs tended to be decreased by nitrogen addition or precipitation exclusion treatment, and bacterial CFUs were more sensitive to the two treatments than fungal CFUs. Soil microbial function (i.e. carbon source utilization) was not affected by nitrogen addition, but significantly decreased by precipitation exclusion. There was a significant positive correlation between bacterial CFUs and microbial function, indicating the crucial roles of culturable bacteria in microbial carbon transformation. Our results highlight the critical effects of nitrogen deposition and 50% reduced precipitation on microbes in topsoil of fir plantation, with implications for unraveling soil microbial ecological function of subtropical forest ecosystem under global changes in future.


Subject(s)
Cunninghamia , Bacteria , Biomass , Carbon/analysis , China , Droughts , Ecosystem , Fatty Acids , Nitrogen/analysis , Phospholipids , Soil , Soil Microbiology
2.
Ying Yong Sheng Tai Xue Bao ; 32(4): 1250-1258, 2021 Apr.
Article in Chinese | MEDLINE | ID: mdl-33899393

ABSTRACT

Moisture is an important factor affecting the priming effect of soil organic carbon (SOC). However, empirical evidence for its effect in mountain meadows soil is lacking. We conducted a 126-day laboratory incubation experiment with the high altitude (2130 m) mountain meadow soil in Wuyi Mountain, by adding 13C-labelled glucose combined with controlling soil moisture (30% and 60% of field water capacity, FWC). The CO2 concentration and 13C-CO2 abundance were measured regularly to examine the differences of SOC mineralization and priming effects under different water conditions and the driving factors. Our results showed that SOC mineralization rate increased with increasing soil water content. The priming effect of meadow soil with different soil moisture showed a decreasing trend with the increases of incubation time. The priming effect in soils with low FWC soil was significantly greater than that with high FWC. At the end of incubation, the cumulative priming effect of low FWC soil was 61.4% higher than that of high FWC soil. Compared with low FWC soil, high FWC soil released more CO2 from glucose, and the ratio of cumulative primed carbon to glucose mineralization under low FWC was significantly higher than that under high FWC soil, indicating that soil microorganisms under the high FWC condition might preferentially mineralize more glucose than SOC and consequently lower priming effect. Therefore, the priming effect under high FWC was smaller than that under low FWC. There was a significant positive relationship between priming effect and microbial biomass carbon, microbial biomass carbon/microbial biomass nitrogen, and NH4+-N, indicating that soil microbial biomass and composition could be changed under low FWC condition. The improved microbial "nitrogen-mining" would increase priming effect. Consequently, the decline of soil moisture of mountain meadow induced by global climate change may increase the priming effect of carbon, with consequences on carbon loss.


Subject(s)
Carbon , Soil , Carbon/analysis , China , Grassland , Nitrogen , Soil Microbiology
3.
Ying Yong Sheng Tai Xue Bao ; 29(3): 748-756, 2018 Mar.
Article in Chinese | MEDLINE | ID: mdl-29722215

ABSTRACT

Examining the variations of soil organic carbon mineralization at different altitudes is crucial for better understanding of soil organic carbon (SOC) dynamics. We selected the low altitude and high altitude broad-leaved forest soils in Wuyi Mountains as the research object, and incubated them under particular annual average temperature (17 and 9 ℃, respectively) in laboratory to investigate the difference of SOC mineralization characteristics. The results showed that the cumulative SOC mineralization had no significant difference between forest soils at low and high altitude in a 126-day incubation period under ambient temperature. Soil organic carbon content of high altitude soil was significantly higher than that from low altitude. The dynamics of SOC mineralization could fitted by the first-order kinetics. Both mineralization potential (CP) and mineralization rate constant (K) values of two soils had no significant difference, but CP/SOC value and mineralization ratio were significantly higher at low altitude, indicating that the carbon sequestration capacity of low altitude soil was relatively lower than that of high altitude under ambient temperature. Soil microbial biomass carbon and microbial quotients were significantly higher than that of low altitude with the increase of incubation time, indicating that the ability of microbial carbon assimilation was greater at high altitude. On the other hand, the activities of ß-1,4-glucosidase and cellobiohydrolase in high altitude soil were higher, suggesting that more labile carbon would be decomposed by soil microbes. The carbon sequestration capacity and microbial carbon utilization efficiency in high altitude soil would be reduced and thus result in a decline of soil organic carbon storage under the scenarios of climate warming.


Subject(s)
Altitude , Carbon/analysis , Forests , Soil/chemistry , Carbon Sequestration , China , Climate Change
SELECTION OF CITATIONS
SEARCH DETAIL
...