Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Genomics ; 25(1): 272, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38475725

ABSTRACT

BACKGROUND: Satellite cells are myogenic precursor cells in adult skeletal muscle and play a crucial role in skeletal muscle regeneration, maintenance, and growth. Like embryonic myoblasts, satellite cells have the ability to proliferate, differentiate, and fuse to form multinucleated myofibers. In this study, we aimed to identify additional transcription factors that control gene expression during bovine satellite cell proliferation and differentiation. RESULTS: Using chromatin immunoprecipitation followed by sequencing, we identified 56,973 and 54,470 genomic regions marked with both the histone modifications H3K4me1 and H3K27ac, which were considered active enhancers, and 50,956 and 59,174 genomic regions marked with H3K27me3, which were considered repressed enhancers, in proliferating and differentiating bovine satellite cells, respectively. In addition, we identified 1,216 and 1,171 super-enhancers in proliferating and differentiating bovine satellite cells, respectively. Analyzing these enhancers showed that in proliferating bovine satellite cells, active enhancers were associated with genes stimulating cell proliferation or inhibiting myoblast differentiation whereas repressed enhancers were associated with genes essential for myoblast differentiation, and that in differentiating satellite cells, active enhancers were associated with genes essential for myoblast differentiation or muscle contraction whereas repressed enhancers were associated with genes stimulating cell proliferation or inhibiting myoblast differentiation. Active enhancers in proliferating bovine satellite cells were enriched with binding sites for many transcription factors such as MYF5 and the AP-1 family transcription factors; active enhancers in differentiating bovine satellite cells were enriched with binding sites for many transcription factors such as MYOG and TFAP4; and repressed enhancers in both proliferating and differentiating bovine satellite cells were enriched with binding sites for NF-kB, ZEB-1, and several other transcription factors. The role of TFAP4 in satellite cell or myoblast differentiation was previously unknown, and through gene knockdown and overexpression, we experimentally validated a critical role for TFAP4 in the differentiation and fusion of bovine satellite cells into myofibers. CONCLUSIONS: Satellite cell proliferation and differentiation are controlled by many transcription factors such as AP-1, TFAP4, NF-kB, and ZEB-1 whose roles in these processes were previously unknown in addition to those transcription factors such as MYF5 and MYOG whose roles in these processes are widely known.


Subject(s)
Chromatin , Satellite Cells, Skeletal Muscle , Animals , Cattle , Chromatin/metabolism , NF-kappa B/metabolism , Transcription Factor AP-1/genetics , Transcription Factor AP-1/metabolism , Cell Differentiation/genetics , Cell Proliferation , Muscle Development/genetics
2.
Ying Yong Sheng Tai Xue Bao ; 34(7): 1779-1786, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37694461

ABSTRACT

To understand the responses of radial growth to climatic factors and the differences in ecological resilience to drought between a heliophilous species Larix principis-rupprechtii and a shade species Picea meyeri in mixed forests, we developed the tree-ring width chronologies of L. principis-rupprechtii and P. meyeri in three mixed forests based on the samples collected from Toudaogou of Saihanba in Hebei, Ningwu County and Kelan County in Shanxi Province. We analyzed the correlation between climatic factors and various chronologies and examined the differences in resistance (Rc), recovery (Rt), and resilience (Rs) of L. principis-rupprechtii and P. meyeri in response to drought stress. The results showed that the radial growth of L. principis-rupprechtii and P. meyeri was negatively correlated with the mean and maximum air temperature from May to July in three mixed forests, and was positively correlated with the Palmer drought index (PDSI) from May to September. Radial growth decline in trees due to drought stress was significantly different between the two species among the three sites, indicating different physiological and ecological regulation strategies. The resistance of P. meyeri was stronger than that of L. principis-rupprechtii at the three study sites, with stronger resilience and resilient elasticity of L. principis-rupprechtii than P. meyeri. As a result, P. meyeri exhibited greater drought resistance than L. principis-rupprechtii. Under global warming condition, L. principis-rupprechtii might be at greater risk of growth decline than P. meyeri in this region.


Subject(s)
Larix , Picea , Droughts , Drought Resistance , Forests , Trees
3.
Cells ; 11(22)2022 11 10.
Article in English | MEDLINE | ID: mdl-36428978

ABSTRACT

Myoblast differentiation is a complex process whereby the mononuclear muscle precursor cells myoblasts express skeletal-muscle-specific genes and fuse with each other to form multinucleated myotubes. The objective of this study was to identify potentially novel mechanisms that mediate myoblast differentiation. We first compared transcriptomes in C2C12 myoblasts before and 6 days after induction of myogenic differentiation by RNA-seq. This analysis identified 11,046 differentially expressed genes, of which 5615 and 5431 genes were upregulated and downregulated, respectively, from before differentiation to differentiation. Functional enrichment analyses revealed that the upregulated genes were associated with skeletal muscle contraction, autophagy, and sarcomeres while the downregulated genes were associated with ribonucleoprotein complex biogenesis, mRNA processing, ribosomes, and other biological processes or cellular components. Western blot analyses showed an increased conversion of LC3-I to LC3-II protein during myoblast differentiation, further demonstrating the upregulation of autophagy during myoblast differentiation. Blocking the autophagic flux in C2C12 cells with chloroquine inhibited the expression of skeletal-muscle-specific genes and the formation of myotubes, confirming a positive role for autophagy in myoblast differentiation and fusion.


Subject(s)
Muscle Development , Myoblasts , Up-Regulation/genetics , Muscle Development/genetics , Myoblasts/metabolism , Autophagy/genetics , RNA/metabolism
4.
BMC Genomics ; 22(1): 901, 2021 Dec 16.
Article in English | MEDLINE | ID: mdl-34915843

ABSTRACT

BACKGROUND: Satellite cells are the myogenic precursor cells in adult skeletal muscle. The objective of this study was to identify enhancers and transcription factors that regulate gene expression during the differentiation of bovine satellite cells into myotubes. RESULTS: Chromatin immunoprecipitation followed by deep sequencing (ChIP-seq) was performed to identify genomic regions where lysine 27 of H3 histone is acetylated (H3K27ac), i.e., active enhancers, from bovine satellite cells before and during differentiation into myotubes. A total of 19,027 and 47,669 H3K27ac-marked enhancers were consistently identified from two biological replicates of before- and during-differentiation bovine satellite cells, respectively. Of these enhancers, 5882 were specific to before-differentiation, 35,723 to during-differentiation, and 13,199 common to before- and during-differentiation bovine satellite cells. Whereas most of the before- or during-differentiation-specific H3K27ac-marked enhancers were located distally to the transcription start site, the enhancers common to before- and during-differentiation were located both distally and proximally to the transcription start site. The three sets of H3K27ac-marked enhancers were associated with functionally different genes and enriched with different transcription factor binding sites. Specifically, many of the H3K27ac-marked enhancers specific to during-differentiation bovine satellite cells were associated with genes involved in muscle structure and development, and were enriched with binding sites for the MyoD, AP-1, KLF, TEAD, and MEF2 families of transcription factors. A positive role was validated for Fos and FosB, two AP-1 family transcription factors, in the differentiation of bovine satellite cells into myotubes by siRNA-mediated knockdown. CONCLUSIONS: Tens of thousands of H3K27ac-marked active enhancers have been identified from bovine satellite cells before or during differentiation. These enhancers contain binding sites not only for transcription factors whose role in satellite cell differentiation is well known but also for transcription factors whose role in satellite cell differentiation is unknown. These enhancers and transcription factors are valuable resources for understanding the complex mechanism that mediates gene expression during satellite cell differentiation. Because satellite cell differentiation is a key step in skeletal muscle growth, the enhancers, the transcription factors, and their target genes identified in this study are also valuable resources for identifying and interpreting skeletal muscle trait-associated DNA variants in cattle.


Subject(s)
Regulatory Sequences, Nucleic Acid , Transcription Factors , Animals , Binding Sites , Cattle , Cell Differentiation/genetics , Transcription Factors/genetics , Transcription Initiation Site
5.
Front Genet ; 12: 742077, 2021.
Article in English | MEDLINE | ID: mdl-34777469

ABSTRACT

Skeletal muscle from meat-producing livestock such as cattle is a major source of food for humans. To improve skeletal muscle growth efficiency or quality in cattle, it is necessary to understand the genetic and physiological mechanisms that govern skeletal muscle composition, development, and growth. Satellite cells are the myogenic progenitor cells in postnatal skeletal muscle. In this study we analyzed the composition of bovine satellite cells with single-cell RNA sequencing (scRNA-seq). We isolated satellite cells from a 2-week-old male calf, cultured them in growth medium for a week, and performed scRNA-seq using the 10x Genomics platform. Deep sequencing of two scRNA-seq libraries constructed from cultured bovine satellite cells yielded 860 million reads. Cell calling analyses revealed that these reads were sequenced from 19,096 individual cells. Clustering analyses indicated that these reads represented 15 cell clusters that differed in gene expression profile. Based on the enriched expression of markers of satellite cells (PAX7 and PAX3), markers of myoblasts (MYOD1, MYF5), and markers of differentiated myoblasts or myocytes (MYOG), three clusters were determined to be satellite cells, two clusters myoblasts, and two clusters myocytes. Gene ontology and trajectory inference analyses indicated that cells in these myogenic clusters differed in proliferation rate and differentiation stage. Two of the remaining clusters were enriched with PDGFRA, a marker of fibro-adipogenic (FAP) cells, the progenitor cells for intramuscular fat, and are therefore considered to be FAP cells. Gene ontology analyses indicated active lipogenesis in one of these two clusters. The identity of the remaining six clusters could not be defined. Overall, the results of this study support the hypothesis that bovine satellite cells are composed of subpopulations that differ in transcriptional and myogenic state. The results of this study also support the hypothesis that intramuscular fat in cattle originates from fibro-adipogenic cells.

6.
J Anim Sci ; 98(4)2020 Apr 01.
Article in English | MEDLINE | ID: mdl-32249920

ABSTRACT

Smooth muscle cells (SMCs) play an important role in physiology and production in farm animals such as pigs. Here, we report the generation of a pig SMC line. Our original objective was to establish an enteroendocrine cell line from the pig ileum epithelium through lentiviral transduction of the Simian Virus (SV) 40 large T antigen. However, an initial expression analysis of marker genes in nine cell clones revealed that none of them were enteroendocrine cells or absorptive enterocytes, goblet cells, or Paneth cells, some of the major cell types existing in the ileum epithelium. A more detailed characterization of one clone named PIC7 by RNA-seq showed that these cells expressed many of the known smooth muscle-specific or -enriched genes, including smooth muscle actin alpha 2, calponin 1, calponin 3, myosin heavy chain 11, myosin light chain kinase, smoothelin, tenascin C, transgelin, tropomyosin 1, and tropomyosin 2. Both quantitative PCR and RNA-seq analyses showed that the PIC7 cells had a high expression of mRNA for smooth muscle actin gamma 2, also known as enteric smooth muscle actin. A Western blot analysis confirmed the expression of SV40 T antigen in the PIC7 cells. An immunohistochemical analysis demonstrated the expression of smooth muscle actin alpha 2 filaments in the PIC7 cells. A collagen gel contraction assay showed that the PIC7 cells were capable of both spontaneous contraction and contraction in response to serotonin stimulation. We conclude that the PIC7 cells are derived from an enteric SMC from the pig ileum. These cells may be a useful model for studying the cellular and molecular physiology of pig enteric SMCs. Because pigs are similar to humans in anatomy and physiology, the PIC7 cells may be also used as a model for human intestinal SMCs.


Subject(s)
Swine/physiology , Actins/genetics , Animals , Calcium-Binding Proteins/genetics , Cell Line , Ileum/physiology , Microfilament Proteins/genetics , Muscle Proteins/genetics , Muscle, Smooth/physiology , Myocytes, Smooth Muscle/physiology , Myosins/genetics , Organ Specificity , RNA, Messenger/genetics , Swine/genetics , Tenascin/genetics , Tropomyosin/genetics , Calponins
7.
J Agric Food Chem ; 64(49): 9421-9427, 2016 Dec 14.
Article in English | MEDLINE | ID: mdl-27960296

ABSTRACT

Many bacteria in nature use quorum sensing (QS) to regulate gene expression. The quorum sensing system plays critical roles in the adaptation of bacteria to the surrounding environment. Previous studies have shown that during high-density fermentation, the autolysis of lactic acid bacteria was regulated by the QS system, and the two-component system (TCS, LBUL_RS00115/LBUL_RS00110) is involved in the autolysis of Lactobacillus delbrueckii subsp. bulgaricus. However, the QS signal molecule, which regulates this pathway, has not been identified. In this study, we compared the genome of Lactobacillus bulgaricus ATCC BAA-365 with the locus of seven lactobacillus QS systems; the position of the QS signal molecule of Lactobacillus bulgaricus ATCC BAA-365 was predicted by bioinformatics tool. Its function was identified by in vitro experiments. Construction of TCS mutant by gene knockout of LBUL_RS00115 confirmed that the signal molecule regulates the density of the flora by the TCS (LBUL_RS00115/LBUL_RS00110). This study indicated that quorum quenching and inhibition based on the signal molecule might serve as an approach to reduce the rate of autolysis of LAB and increase the number of live bacteria in fermentation.


Subject(s)
Bacterial Proteins/genetics , Lactobacillus delbrueckii/physiology , Quorum Sensing , Amino Acid Sequence , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Bacteriolysis , Fermentation , Lactobacillus/classification , Lactobacillus/genetics , Lactobacillus/metabolism , Lactobacillus delbrueckii/chemistry , Lactobacillus delbrueckii/genetics , Molecular Sequence Data , Phylogeny
8.
Sci Rep ; 6: 37916, 2016 11 25.
Article in English | MEDLINE | ID: mdl-27885267

ABSTRACT

Thermotolerant Bacillus coagulans is considered to be a more promising producer for bio-chemicals, due to its capacity to withstand harsh conditions. Two L-lactate dehydrogenase (LDH) encoding genes (ldhL1 and ldhL2) and one D-LDH encoding gene (ldhD) were annotated from the B. coagulans DSM1 genome. Transcriptional analysis revealed that the expression of ldhL2 was undetectable while the ldhL1 transcription level was much higher than that of ldhD at all growth phases. Deletion of the ldhL2 gene revealed no difference in fermentation profile compared to the wild-type strain, while ldhL1 single deletion or ldhL1ldhL2 double deletion completely blocked L-lactic acid production. Complementation of ldhL1 in the above knockout strains restored fermentation profiles to those observed in the wild-type strain. This study demonstrates ldhL1 is crucial for L-lactic acid production and NADH balance in B. coagulans DSM1 and lays the fundamental for engineering the thermotolerant B. coagulans strain as a platform chemicals producer.


Subject(s)
Bacillus coagulans/enzymology , Bacillus coagulans/growth & development , L-Lactate Dehydrogenase/genetics , Lactic Acid/metabolism , Bacillus coagulans/genetics , Bacillus coagulans/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Fermentation , Gene Expression Profiling , Gene Expression Regulation, Bacterial , Gene Expression Regulation, Enzymologic , L-Lactate Dehydrogenase/metabolism , Molecular Sequence Annotation
SELECTION OF CITATIONS
SEARCH DETAIL
...