Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Microbiol ; 14: 1139679, 2023.
Article in English | MEDLINE | ID: mdl-37213522

ABSTRACT

Introduction: Flammulina filiformis is one of the most commercially important edible fungi worldwide, with its nutritional value and medicinal properties. It becomes a good model species to study the tolerance of abiotic stress during mycelia growth in edible mushroom cultivation. Transcription factor Ste12 has been reported to be involved in the regulation of stress tolerance and sexual reproduction in fungi. Methods: In this study, identification and phylogenetic analysis of ste12-like was performed by bioinformatics methods. Four ste12-like overexpression transformants of F. filiformis were constructed by Agrobacterium tumefaciens-mediated transformation. Results and Discussion: Phylogenetic analysis showed that Ste12-like contained conserved amino acid sequences. All the overexpression transformants were more tolerant to salt stress, cold stress and oxidative stress than wild-type strains. In the fruiting experiment, the number of fruiting bodies of overexpression transformants increased compared with wild-type strains, but the growth rate of stipes slowed down. It suggested that gene ste12-like was involved in the regulation of abiotic stress tolerance and fruiting body development in F. filiformis.

2.
Arch Microbiol ; 203(9): 5373-5380, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34387705

ABSTRACT

Fruiting body development in Agaricomycetes represents the most complex and unclear process in the fungi. Mating type pathways (A and B) and transcription factors are important regulators in the sexual development of mushrooms. It is known that clampless1 (clp1) is an additional gene that participate under the homeodomain (HD) genes in the matA pathway and clp1 inactivation blocks clamps formation in Coprinopsis cinerea. In this study we identified and analyzed a homologous Fvclp1 gene in the edible mushroom Flammulina velutipes. The coding sequence of the Fvclp1 was 1011 bp without intron interruption, encoding a protein of 336 amino acids. To exhibit the role of Fvclp1 in clamp development and fruiting body formation, knockdown and overexpression mutants were prepared. No significant difference was observed in the monokaryotic hyphal morphology of overexpression and knockdown transformants. In the dikaryotic hyphae from the compatible crossings between the wild-type L22 strain and Fvclp1 knockdown or overexpression mutants, clamp connections developed. However, knockdown mutants could generate fewer fruiting bodies than the wild-type strain. On the contrary, reduced mycelial growth rate but improved fruiting ability was observed in the dikaryotic Fvclp1 overexpression mutants as compared to the wild-type strain. These results indicate that Fvclp1 is necessary and actively involved in fruiting body development in F. velutipes. Overall, these findings suggest that further studies on the function of Fvclp1 would advance our understanding of sexual reproduction and fruiting body development in edible mushrooms.


Subject(s)
Agaricales , Flammulina , Flammulina/genetics , Fruiting Bodies, Fungal/genetics , Hyphae/genetics , Reproduction
3.
Gene ; 785: 145618, 2021 Jun 15.
Article in English | MEDLINE | ID: mdl-33775849

ABSTRACT

Fruiting body formation in Agaricomycetes represents the most complex and unclear process in the fungi. Mating type pathways (matA and matB) and transcription factors are important regulators in the process. Here, we report a new High-mobility-group (HMG) box domain protein FvHmg1 that acts as a negative transcription regulator in fruiting body development in Winter Mushroom Flammulina velutipes. However, the expression of Fvhmg1 in dikaryon and primordial stages was significantly lower than that of monokaryon. The Fvhmg1-RNAi mutants had a better ability of fruiting than wild type strain. Overall expression of Fvhmg1 was controlled under compatible matA and matB genes where compatible matA genes could increase its expression level, while compatible matB genes had the opposite effect. It means when two monokaryons with compatible matA and matB genes were crossed, the negatively transcription factor FvHmg1 was inhibited, and normal fully fruiting body could formation and develop. The relationship between FvHmg1 and mating type pathway would advance to understand of sexual reproduction and fruiting body development in edible mushrooms.


Subject(s)
Flammulina/genetics , HMGB1 Protein/physiology , Transcription Factors/physiology , Flammulina/growth & development , Fruiting Bodies, Fungal/genetics , Gene Expression Regulation, Fungal , Genes, Mating Type, Fungal , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL
...