Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Publication year range
1.
Chem Sci ; 13(12): 3599-3608, 2022 Mar 24.
Article in English | MEDLINE | ID: mdl-35432854

ABSTRACT

Image-guided photodynamic therapy (PDT) can realize highly precise and effective therapy via the integration of imaging and therapy, and has created high requirements for photosensitizers. However, the PDT modality usually utilizes conventional type II photosensitizers, resulting in unsatisfactory imaging and therapeutic outcomes due to aggregation-caused quenching (ACQ), "always on" fluorescence and strong oxygen dependence. Herein, we report the type I-based aggregation-induced emission (AIE) photosensitizer TCM-CPS with low oxygen dependence, near-infrared (NIR) emission and "off-on" fluorescence; in particular, it produces more reactive oxygen species (ROS) than commercially available Chlorin e6 and Rose Bengal. In the rational design of the AIE-based photosensitizer TCM-CPS, the strongly electron-donating carbazole unit and π-thiophene bridge distinctly extend the emission wavelength and decrease the autofluorescence interference in bio-imaging, and the hydrophilic pyridinium salt group guarantees good molecular dispersion and maintains the fluorescence-off state in the aqueous system to decrease the initial fluorescence background. Moreover, the strong donor-π-acceptor (D-π-A) character in TCM-CPS greatly separates the HOMO-LUMO distribution, enhancing the ROS generation, and TCM-CPS was constructed as a type I photosensitizer with the assistance of strong intramolecular charge transfer in the electron-rich anion-π+ structure. Based on its favorable hydrophilicity and photosensitivity, TCM-CPS was found to be a highly efficient free-radical ROS photogenerator for both visualizing cells using light-up NIR fluorescence and efficiently killing cancer cells upon light irradiation. The positively charged TCM-CPS could quickly bind to bacteria via electrostatic interactions to provide a light-up signal and kill bacteria at a low concentration. In the PDT treatment of bacteria-infected mice, the mice exhibited accelerated wound healing with low wound infection. Thus, the AIE-based type I photosensitizer TCM-CPS has great potential to replace commercially available photosensitizers in the image-guided PDT modality for the treatment of cancer and bacterial infection.

2.
J Mater Chem B ; 9(47): 9711-9719, 2021 12 08.
Article in English | MEDLINE | ID: mdl-34779470

ABSTRACT

Hydroxyapatite (HA) shows promising applications in the clinical treatment of bone defects owing to its excellent physicochemical properties, such as biocompatibility, bioactivity, and osteoconductivity. However, it is difficult to maintain a porous structure in HA materials because of processing difficulties. In this study, a hard template method was developed to prepare a porous HA monolith with a hierarchical pore structure and high porosity. The cellulose monolith template was prepared from cellulose acetate using a thermally induced phase separation method. The cellulose monoliths were then immersed into the HA slurry to form a cellulose_HA composite monolith, which was converted to an HA monolith by burning in air to remove the cellulose monolith. Owing to the hierarchically porous structure of the cellulose monolith template, the obtained HA monolith demonstrated a hierarchically porous structure. Furthermore, the HA monolith was explored to study the adsorption and release properties of bovine serum albumin (BSA), which indicated that the HA monolith had a high adsorption capacity (388.6 mg g-1) and sustained release from the BSA-loaded HA monolith. Thus, HA monoliths have potential applications in the field of protein purification and biomaterials.


Subject(s)
Hydroxyapatites/chemistry , Serum Albumin, Bovine/chemistry , Adsorption , Animals , Cattle , Cellulose/chemistry , Hydroxyapatites/chemical synthesis , Porosity
3.
ACS Omega ; 6(23): 15374-15381, 2021 Jun 15.
Article in English | MEDLINE | ID: mdl-34151115

ABSTRACT

Inorganic oxides with unique physical and chemical properties have attracted much attention because they can be applied in a wide range of fields. Herein, recycled cigarette filters are deacetylated to cellulose filters (CFs), which are then applied as templates to prepare fiber-like inorganic oxides (titanium dioxide, TiO2, and silicon dioxide, SiO2). Inorganic oxides are prepared using CF as a template by a typical sol-gel reaction of metal alkoxides. Owing to the fibrous structure of the CF template, the prepared inorganic oxides (TiO2 and SiO2) show similar fibrous structures, which was confirmed by scanning electron microscopy and nitrogen adsorption-desorption analysis. Moreover, the prepared inorganic oxides (TiO2 and SiO2) show high surface areas and pore volumes. Furthermore, the TiO2 fiber-like materials are evaluated for their photocatalytic properties by analyzing the methylene blue (MB) and methyl orange (MO) degradation. In this study, we provide a clean method, which can convert cellulose acetate-based waste into useful templates to prepare inorganic oxides with relatively simple steps, and the prepared inorganic oxides can be applied in water treatment.

SELECTION OF CITATIONS
SEARCH DETAIL
...