Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Nanosci Nanotechnol ; 12(6): 5051-3, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22905575

ABSTRACT

Irradiation with helium ions is an effective method for triggering ferromagnetism in graphite. Chemical inertness of helium suggests that local magnetic moment formation is determined solely by the intrinsic carbon defects created during the target damage. Interacting moments are located in two places: in the vicinity of the sample surface and near the point of maximum defect generation.


Subject(s)
Graphite/chemistry , Heavy Ions , Helium , Magnetic Fields , Materials Testing , Surface Properties/radiation effects
2.
Org Biomol Chem ; 3(5): 932-40, 2005 Mar 07.
Article in English | MEDLINE | ID: mdl-15731881

ABSTRACT

The reaction of 4-(3,4-dimethoxyphenyl)-5-aminopyrazoles 7A-D with aromatic and heterocyclic aldehydes in strong acidic media (trifluoroacetic or formic acid) has been studied. The initial azomethine derivatives 8 undergo cyclization similar to the Pictet-Spengler condensation to form the intermediate 4,5-dihydroisoquinolines 9 which readily dehydrogenate giving 5-aryl(heteroaryl)-pyrazolo[3,4-c]isoquinoline derivatives 10 as the final products. Whereas for benzaldehyde and its derivatives this one-pot synthesis presents a convenient general route to 5-aryl-pyrazolo[3,4-c]isoquinolines 10, in the case of heterocyclic aldehydes the product structure varies markedly with the structure of the aldehyde used: (i) 3-pyridyl-, 3-quinolyl-, 3-thienyl-, and 1,2,3-thiadiazolyl-5-carboxaldehydes give 5-heteroarylpyrazolo[3,4-c]isoquinolines; (ii) 1-methylbenzimidazolyl-2-carboxaldehyde gives only intermediate azomethine 8Dh, which does not cyclize; (iii) 1-R-3-indolylcarboxaldehydes (R = H, CH3, CH2Ph) eliminate the heteroaryl fragment resulting in 5-unsubstituted pyrazolo[3,4-c]isoquinolines 11. Thienyl-2-carboxaldehyde reacts by both pathways (i) and (iii) depending on the reaction conditions. The single crystal X-ray structures for 10Dj, 10Cd and 11D provide confirmation of the different types of products formed in these reactions. Mechanisms which explain these transformations are presented.


Subject(s)
Aldehydes/chemistry , Isoquinolines/chemical synthesis , Pyrazoles/chemical synthesis , Crystallography, X-Ray , Heterocyclic Compounds, 3-Ring/chemical synthesis , Heterocyclic Compounds, 3-Ring/chemistry , Heterocyclic Compounds, 4 or More Rings/chemical synthesis , Heterocyclic Compounds, 4 or More Rings/chemistry , Isoquinolines/chemistry , Molecular Conformation , Molecular Structure , Pyrazoles/chemistry
3.
J Am Chem Soc ; 124(47): 14227-38, 2002 Nov 27.
Article in English | MEDLINE | ID: mdl-12440922

ABSTRACT

The synthesis of novel electrochemically amphoteric TTFAQ-sigma-A compounds (TTFAQ = 9,10-bis(1,3-dithiol-2-ylidene)-9,10-dihydroanthracene, sigma = saturated spacer, A = polynitrofluorene acceptor) is reported. Their solution redox behavior is characterized by three single-electron reduction and one two-electron oxidation waves. Electrochemical quasireversibility of the TTFAQ(2+) state and a low E(ox) - E(red) gap ( approximately 0.25 V) for 3-(9-dicyanomethylene-4,5,7-trinitrofluorene-2-sulfonyl)-propionic acid 2-[10-(4,5-dimethyl-[1,3]dithiol-2-ylidene)-9,10-dihydroanthracen-9-ylidene]-5-methyl-[1,3]dithiol-4-ylmethyl ester (10) has enabled the electrochemical generation of the hitherto unknown transient D(2+)-sigma-A(.-) state as observed in cyclic voltammetry and time-resolved spectroelectrochemistry. The ground state of compound 10 was shown to be ionic in the solid but is essentially neutral in solution (according to electron paramagnetic resonance). The X-ray structure of an intermolecular 1:2 complex between 2-[2,7-bis(2-hydroxyethoxy)-9,10-bis(4,5-dimethyl-[1,3]dithiol-2-ylidene)-9,10-dihydroanthracene and 2,5,7-trinitro-4-bromo-9-dicyanomethylenefluorene, 14.(17)(2), reveals, for the first time, full electron transfer in a fluorene charge-transfer complex.

SELECTION OF CITATIONS
SEARCH DETAIL
...