Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nanomaterials (Basel) ; 13(19)2023 Sep 27.
Article in English | MEDLINE | ID: mdl-37836297

ABSTRACT

In this study, we considered the structural stability, electronic properties, and phonon dispersion of the cubic (c-ZrO2), tetragonal (t-ZrO2), and monoclinic (m-ZrO2) phases of ZrO2. We found that the monoclinic phase of zirconium dioxide is the most stable among the three phases in terms of total energy, lowest enthalpy, highest entropy, and other thermodynamic properties. The smallest negative modes were found for m-ZrO2. Our analysis of the electronic properties showed that during the m-t phase transformation of ZrO2, the Fermi level first shifts by 0.125 eV toward higher energies, and then decreases by 0.08 eV in the t-c cross-section. The band gaps for c-ZrO2, t-ZrO2, and m-ZrO2 are 5.140 eV, 5.898 eV, and 5.288 eV, respectively. Calculations based on the analysis of the influence of doping 3.23, 6.67, 10.35, and 16.15 mol. %Y2O3 onto the m-ZrO2 structure showed that the enthalpy of m-YSZ decreases linearly, which accompanies the further stabilization of monoclinic ZrO2 and an increase in its defectiveness. A doping-induced and concentration-dependent phase transition in ZrO2 under the influence of Y2O3 was discovered, due to which the position of the Fermi level changes and the energy gap decreases. It has been established that the main contribution to the formation of the conduction band is made by the p-states of electrons, not only for pure systems, but also those doped with Y2O3. The t-ZrO2 (101) and t-YSZ (101) surface models were selected as optimal surfaces for water adsorption based on a comparison of their surface energies. An analysis of the mechanism of water adsorption on the surface of t-ZrO2 (101) and t-YSZ (101) showed that H2O on unstabilized t-ZrO2 (101) is adsorbed dissociatively with an energy of -1.22 eV, as well as by the method of molecular chemisorption with an energy of -0.69 eV and the formation of a hydrogen bond with a bond length of 1.01 Å. In the case of t-YSZ (101), water is molecularly adsorbed onto the surface with an energy of -1.84 eV. Dissociative adsorption of water occurs at an energy of -1.23 eV, near the yttrium atom. The results show that ab initio approaches are able to describe the mechanism of doping-induced phase transitions in (ZrO2+Y2O3)-like systems, based on which it can be assumed that DFT calculations can also flawlessly evaluate other physical and chemical properties of YSZ, which have not yet been studied quantum chemical research. The obtained results complement the database of research works carried out in the field of the application of biocompatible zirconium dioxide crystals and ceramics in green energy generation, and can be used in designing humidity-to-electricity converters and in creating solid oxide fuel cells based on ZrO2.

2.
Nanomaterials (Basel) ; 12(24)2022 Dec 19.
Article in English | MEDLINE | ID: mdl-36558348

ABSTRACT

The paper considers the new effects of the nanoscale state of matter, which open up prospects for the development of electronic devices using new physical principles. The contacts of chemically homogeneous nanoparticles of yttrium-stabilized zirconium oxide (ZrO2­x mol% Y2O3, x = 0, 3, 4, 8; YSZ) with different sizes of 7.5 nm and 9 nm; 7.5 nm and 11 nm; and 7.5 nm and 14 nm, respectively, was studied on direct current using nanostructured objects in the form of compacts obtained by high-hydrostatic pressure (HP-compacts of 300MPa). A unique size effect of the nonlinear (rectifying-type contact) dependence of the electrical properties (in the region U < 2.5 V, I ≤ 2.7 mA) of the contact of different-sized YSZ nanoparticles of the same chemical composition is revealed, which indicates the possibility of creating semiconductor structures of a new type (homogeneous electronics). The electronic structure of the near-surface regions of nanoparticles of studied oxide materials and the possibility of obtaining specifically rectifying properties of the contacts were studied theoretically. Models of surface states of the Tamm-type are constructed considering the Coulomb long-range action. The discovered energy variance and its dependence on the curvature of the surface of nanoparticles made it possible to study the conditions for the formation of a contact potential difference in cases of nanoparticles of the same radius (synergistic effect), different radii (doped and undoped variants), as well as to discover the possibility of describing a group of powder particles within the Anderson model. The determined effect makes it possible to solve the problem of diffusion instability of semiconductor heterojunctions and opens up prospects for creating electronic devices with a fundamentally new level of properties for use in various fields of the economy and breakthrough critical technologies.

3.
Nanomaterials (Basel) ; 12(3)2022 Jan 27.
Article in English | MEDLINE | ID: mdl-35159780

ABSTRACT

The present study was aimed at revealing the influence of the mechanical stress induced by water molecule adsorption on the composition of crystalline phases in the ZrO2 + 3 mol% Y2O3-nanoparticles. Three basic methods were used to determine the phase transition: neutron diffraction, Raman microspectroscopic scanning, and X-ray diffraction. The fact of reversible phase-structural ß â†’ α transformation and the simultaneous presence of two polymorphic structural modifications (ß is the phase of the tetragonal syngony and α of monoclinic syngony in nanosized particles (9 nm)) under normal physical conditions was established by these methods. An assumption was made regarding the connection of the physical mechanism of transformation of the extremely nonequilibrium surface of nanoparticles with electronic exchange of the material of the near-surface layer of nanoparticles with the adsorption layer through donor-acceptor interaction. The principal possibility of creating direct-acting hydroelectric converters based on nanoscale YSZ (Yttria-Stabilized Zirconia) systems due to the reversible character of the considered effect was shown.

SELECTION OF CITATIONS
SEARCH DETAIL
...