Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Adv Sci (Weinh) ; 10(30): e2303622, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37626451

ABSTRACT

The chemical interaction of Sn with H2 by X-ray diffraction methods at pressures of 180-210 GPa is studied. A previously unknown tetrahydride SnH4 with a cubic structure (fcc) exhibiting superconducting properties below TC  = 72 K is obtained; the formation of a high molecular C2/m-SnH14 superhydride and several lower hydrides, fcc SnH2 , and C2-Sn12 H18 , is also detected. The temperature dependence of critical current density JC (T) in SnH4 yields the superconducting gap 2Δ(0) = 21.6 meV at 180 GPa. SnH4 has unusual behavior in strong magnetic fields: B,T-linear dependences of magnetoresistance and the upper critical magnetic field BC2 (T) ∝ (TC - T). The latter contradicts the Wertheimer-Helfand-Hohenberg model developed for conventional superconductors. Along with this, the temperature dependence of electrical resistance of fcc SnH4 in non-superconducting state exhibits a deviation from what is expected for phonon-mediated scattering described by the Bloch-Grüneisen model and is beyond the framework of the Fermi liquid theory. Such anomalies occur for many superhydrides, making them much closer to cuprates than previously believed.

2.
Adv Mater ; 34(42): e2204038, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35829689

ABSTRACT

Polyhydrides are a novel class of superconducting materials with extremely high critical parameters, which is very promising for sensor applications. On the other hand, a complete experimental study of the best so far known superconductor, lanthanum superhydride LaH10 , encounters a serious complication because of the large upper critical magnetic field HC2 (0), exceeding 120-160 T. It is found that partial replacement of La atoms by magnetic Nd atoms results in significant suppression of superconductivity in LaH10 : each at% of Nd causes a decrease in TC by 10-11 K, helping to control the critical parameters of this compound. Strong pulsed magnetic fields up to 68 T are used to study the Hall effect, magnetoresistance, and the magnetic phase diagram of ternary metal polyhydrides for the first time. Surprisingly, (La,Nd)H10 demonstrates completely linear HC2 (T) âˆ |T - TC |, which calls into question the applicability of the Werthamer-Helfand-Hohenberg model for polyhydrides. The suppression of superconductivity in LaH10 by magnetic Nd atoms and the robustness of TC with respect to nonmagnetic impurities (e.g., Y, Al, C) under Anderson's theorem gives new experimental evidence of the isotropic (s-wave) character of conventional electron-phonon pairing in lanthanum decahydride.

3.
Acta Crystallogr B Struct Sci Cryst Eng Mater ; 78(Pt 3 Pt 2): 546-556, 2022 Jun 01.
Article in English | MEDLINE | ID: mdl-35702971

ABSTRACT

The crystal structure of samarium iron borate was analyzed with regard to growth conditions and temperature. The inclusion of about 7% Bi atoms in the crystals grown using the Bi2Mo3O12-based flux was discovered and there were no impurities in the crystals grown using the Li2WO4-based flux. No pronounced structural features associated with Bi inclusion were observed. The different absolute configurations of the samples grown using both fluxes were demonstrated. Below 80 K, a negative thermal expansion of the c unit-cell parameter was found. The structure of (Sm0.93Bi0.07)Fe3(BO3)4 belongs to the trigonal space group R32 in the temperature range 90-400 K. A decrease in the (Sm,Bi)-O, Sm-B, Sm-Fe, Fe-O, Fe-B and Fe-Fe distances is observed with a lowering of the temperature, B1-O does not change, B2-O increases slightly and the B2O3 triangles deviate from the ab plane. The strongest decrease in the equivalent isotropic atomic displacement parameters (Ueq) with decreasing temperature is observed for atoms Sm and O2, and the weakest is observed for B1. The O2 atoms have the highest Ueq values, the most elongated atomic displacement ellipsoids of all the atoms and the smallest number of allowed vibrational modes of all the O atoms. The largest number of allowed vibrational modes and the strongest interactions with neighbouring atoms is seen for the B atoms, and the opposite is seen for the Sm atoms. The quadrupole splitting Δ(T) of the paramagnetic Mössbauer spectra increases linearly with cooling. The Néel temperature [TN = 31.93 (5) K] was determined from the temperature dependence of the hyperfine magnetic field Bhf(T), which has a non-Brillouin character. The easy-plane long-range magnetic ordering below TN was confirmed.

4.
Article in English | MEDLINE | ID: mdl-35129115

ABSTRACT

Neodymium iron borate NdFe3(BO3)4 is an intensively studied multiferroic with high electric polarization values controlled by a magnetic field. It is characterized by a large quadratic magnetoelectric effect, rigidity in the base plane and a rather strong piezoelectric effect. In this work, the atomic structure of (Nd0.91Bi0.09)Fe3(BO3)4 was studied by single-crystal X-ray diffraction in the temperature range 20-500 K (space group R32, Z = 3). The Bi atoms found in the composition partially substitute the Nd atoms in the 3a position; they entered the structure due to the growth conditions in the presence of Bi2Mo3O12. It was shown that in the temperature range 20-500 K there is no structural phase transition R32→P3121, which occurs in rare-earth iron borates (RE = Eu-Er, Y) with an effective rare-earth cation radius smaller than that of Nd. The temperature dependence of the unit-cell c parameter reveals a slight increase on cooling below 90 K, which is similar to the results obtained previously for iron borates of Gd, Y and Ho. The atomic distances (Nd,Bi)-O, (Nd,Bi)-B, (Nd,Bi)-Fe, Fe-O, Fe-B and Fe-Fe in the iron chains and between chains decrease steadily with decreasing temperature from 500 to 90 K, whereas the B1(3b)-O distance does not change and the average B2(9e)-O distance increases slightly. There is a uniform decrease in the atomic displacement parameters with decreasing temperature, with a more pronounced decrease for the Nd(3a) and O2(9e) atoms. The O2(9e) atoms are characterized by the maximum atomic displacement parameters and the most elongated atomic displacement ellipsoids. The characteristic Debye and Einstein temperatures, and the static component in the atomic displacements were determined for cations using multi-temperature diffraction data. It was shown that the Nd cations have the weakest bonds with the surrounding atoms and the B cations have the strongest.


Subject(s)
Bismuth , Iron , Crystallography, X-Ray , Neodymium , Temperature
5.
Adv Mater ; 33(15): e2006832, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33751670

ABSTRACT

Pressure-stabilized hydrides are a new rapidly growing class of high-temperature superconductors, which is believed to be described within the conventional phonon-mediated mechanism of coupling. Here, the synthesis of one of the best-known high-TC superconductors-yttrium hexahydride I m 3 ¯ m -YH6 is reported, which displays a superconducting transition at ≈224 K at 166 GPa. The extrapolated upper critical magnetic field Bc2 (0) of YH6 is surprisingly high: 116-158 T, which is 2-2.5 times larger than the calculated value. A pronounced shift of TC in yttrium deuteride YD6 with the isotope coefficient 0.4 supports the phonon-assisted superconductivity. Current-voltage measurements show that the critical current IC and its density JC may exceed 1.75 A and 3500 A mm-2 at 4 K, respectively, which is higher than that of the commercial superconductors, such as NbTi and YBCO. The results of superconducting density functional theory (SCDFT) and anharmonic calculations, together with anomalously high critical magnetic field, suggest notable departures of the superconducting properties from the conventional Migdal-Eliashberg and Bardeen-Cooper-Schrieffer theories, and presence of an additional mechanism of superconductivity.

6.
Pharmaceutics ; 14(1)2021 Dec 28.
Article in English | MEDLINE | ID: mdl-35056960

ABSTRACT

Nanosystems for targeted delivery and remote-controlled release of therapeutic agents has become a top priority in pharmaceutical science and drug development in recent decades. Application of a low frequency magnetic field (LFMF) as an external stimulus opens up opportunities to trigger release of the encapsulated bioactive substances with high locality and penetration ability without heating of biological tissue in vivo. Therefore, the development of novel microencapsulated drug formulations sensitive to LFMF is of paramount importance. Here, we report the result of LFMF-triggered release of the fluorescently labeled dextran from polyelectrolyte microcapsules modified with magnetic iron oxide nanoparticles. Polyelectrolyte microcapsules were obtained by a method of sequential deposition of oppositely charged poly(allylamine hydrochloride) (PAH) and poly(sodium 4-styrenesulfonate) (PSS) on the surface of colloidal vaterite particles. The synthesized single domain maghemite nanoparticles integrated into the polymer multilayers serve as magneto-mechanical actuators. We report the first systematic study of the effect of magnetic field with different frequencies on the permeability of the microcapsules. The in situ measurements of the optical density curves upon the 100 mT LFMF treatment were carried out for a range of frequencies from 30 to 150 Hz. Such fields do not cause any considerable heating of the magnetic nanoparticles but promote their rotating-oscillating mechanical motion that produces mechanical forces and deformations of the adjacent materials. We observed the changes in release of the encapsulated TRITC-dextran molecules from the PAH/PSS microcapsules upon application of the 50 Hz alternating magnetic field. The obtained results open new horizons for the design of polymer systems for triggered drug release without dangerous heating and overheating of tissues.

7.
Acta Crystallogr B Struct Sci Cryst Eng Mater ; 76(Pt 6): 1100-1108, 2020 Dec 01.
Article in English | MEDLINE | ID: mdl-33289721

ABSTRACT

High-quality Fe1-xGaxBO3 single crystals (0.0 ≤ x ≤ 1.0) in the form of basal plates were synthesized by the flux technique. The exact content of Fe and Ga and homogeneity of their distribution in the crystal structure were determined by energy-dispersive X-ray spectroscopy. The crystal structure was refined using single-crystal X-ray diffraction data. The electronic and magnetic properties were studied using Mössbauer spectroscopy. It is shown that even a small content of diamagnetic gallium leads to a rearrangement of the crystal structure and essentially changes the magnetic hyperfine parameters of the crystals.

8.
Beilstein J Nanotechnol ; 10: 1964-1972, 2019.
Article in English | MEDLINE | ID: mdl-31667044

ABSTRACT

Background: One of the future applications of magnetic nanoparticles is the development of new iron-oxide-based magnetic resonance imaging (MRI) negative contrast agents, which are intended to improve the results of diagnostics and complement existing Gd-based contrast media. Results: Iron oxide nanoparticles designed for use as MRI contrast media are precisely examined by a variety of methods: powder X-ray diffraction (XRD), transmission electron microscopy (TEM), Raman spectroscopy, Mössbauer spectroscopy and zero-field nuclear magnetic resonance (ZF-NMR) spectroscopy. TEM and XRD measurements reveal a spherical shape of the nanoparticles with an average diameter of 5-8 nm and a cubic spinel-type crystal structure of space group Fd-3m. Raman, Mössbauer and NMR spectroscopy clearly indicate the presence of the maghemite γ-Fe2O3 phase. Moreover, a difference in the magnetic behavior of uncoated and human serum albumin coated iron oxide nanoparticles was observed by Mössbauer spectroscopy. Conclusion: This difference in magnetic behavior is explained by the influence of biofunctionalization on the magnetic and electronic properties of the iron oxide nanoparticles. The ZF-NMR spectra analysis allowed us to determine the relative amount of iron located in the core and the surface layer of the nanoparticles. The obtained results are important for understanding the structural and magnetic properties of iron oxide nanoparticles used as T 2 contrast agents for MRI.

9.
Acta Crystallogr B Struct Sci Cryst Eng Mater ; 75(Pt 6): 954-968, 2019 Dec 01.
Article in English | MEDLINE | ID: mdl-32830675

ABSTRACT

An accurate single-crystal X-ray diffraction study of bismuth-containing HoFe3(BO3)4 between 11 and 500 K has revealed structural phase transition at Tstr = 365 K. The Bi atoms enter the composition from Bi2Mo3O12-based flux during crystal growth and significantly affect Tstr. The content of Bi was estimated by two independent methods, establishing the composition as (Ho0.96Bi0.04)Fe3(BO3)4. In the low-temperature (LT) phase below Tstr the (Ho0.96Bi0.04)Fe3(BO3)4 crystal symmetry is trigonal, of space group P3121, whereas at high temperature (HT) above 365 K the symmetry increases to space group R32. There is a sharp jump of oxygen O1 (LT) and O2 (LT) atomic displacement parameters (ADP) at Tstr. O1 and O2 ADP ellipsoids are the most elongated over 90-500 K. In space group R32 specific distances decrease steadily or do not change with decreasing temperature. In space group P3121 the distortion of the polyhedra Ho(Bi)O6, Fe1O6 and Fe2O6, B2O3 and B3O3 increases with decreasing temperature, whereas the triangles B1O3 remain almost equilateral. All BO3 triangles deviate from the ab plane with decreasing temperature. Fe-Fe distances in Fe1 chains decrease, while distances in Fe2 chains increase with decreasing temperature. The Mössbauer study confirms that the FeO6 octahedra undergo complex dynamic distortions. However, all observed distortions are rather small, and the general change in symmetry during the structural phase transition has very little influence on the local environment of iron in oxygen octahedra. The Mössbauer spectra do not distinguish two structurally different Fe1 and Fe2 positions in the LT phase. The characteristic temperatures of cation thermal vibrations were calculated using X-ray diffraction and Mössbauer data.

10.
Inorg Chem ; 57(23): 14895-14903, 2018 Dec 03.
Article in English | MEDLINE | ID: mdl-30411622

ABSTRACT

A mechanism was established for the formation of nanosized iron carbide particles encapsulated in carbon shells via the processes of ferrocene thermal conversions at high pressures. At a pressure of 8.0 GPa, products of ferrocene decomposition were studied as a function of temperature by X-ray diffraction, Raman and Mössbauer spectroscopy, scanning and transmission electron microscopy. It was shown that the mechanism of formation of the carbon-encapsulated iron carbide nanoparticles at high pressures and temperatures differs qualitatively from the known mechanism of their formation in the gas-phase processes of laser pyrolysis or photolysis of ferrocene. At high pressures and temperatures, the formation of iron carbide nanoparticles occurs not due to the primary growth of pure iron particles and the subsequent dissolution of carbon in iron. Nanoparticles are formed due to the direct fusion of iron-carbon clusters, which are formed at intermediate stages of ferrocene thermal destruction. Then, obtained amorphous iron carbides Fe1- xC x with a high carbon content start to crystallize. Two crystalline carbon-encapsulated forms of iron carbide (Fe7C3 and Fe3C) are the main products of crystallization of the amorphous Fe1- xC x depending on the temperature of the ferrocene treatment.

11.
Acta Crystallogr B Struct Sci Cryst Eng Mater ; 74(Pt 2): 226-238, 2018 Apr 01.
Article in English | MEDLINE | ID: mdl-29616996

ABSTRACT

An accurate X-ray diffraction study of (Y0.95Bi0.05)Fe3(BO3)4 single crystals in the temperature range 90-500 K was performed on a laboratory diffractometer and used synchrotron radiation. It was established that the crystal undergoes a diffuse structural phase transition in the temperature range 350-380 K. The complexity of localization of such a transition over temperature was overcome by means of special analysis of systematic extinction reflections by symmetry. The transition temperature can be considered to be Tstr ≃ 370 K. The crystal has a trigonal structure in the space group P3121 at temperatures of 90-370 K, and it has a trigonal structure in the space group R32 at 375-500 K. There is one type of chain formed by the FeO6 octahedra along the c axis in the R32 phase. When going into the P3121 phase, two types of nonequivalent chains arise, in which Fe atoms are separated from the Y atoms by a different distance. Upon lowering the temperature from 500 to 90 K, a distortion of the Y(Bi)O6, FeO6, B(2,3)O3 coordination polyhedra is observed. The distances between atoms in helical Fe chains and Fe-O-Fe angles change non-uniformly. A sharp jump in the equivalent isotropic displacement parameters of O1 and O2 atoms within the Fe-Fe chains and fluctuations of the equivalent isotropic displacement parameters of B2 and B3 atoms were observed in the region of structural transition as well as noticeable elongation of O1, O2, B2, B3, Fe1, Fe2 atomic displacement ellipsoids. It was established that the helices of electron density formed by Fe, O1 and O2 atoms may be structural elements determining chirality, optical activity and multiferroicity of rare-earth iron borates. Compression and stretching of these helices account for the symmetry change and for the manifestation of a number of properties, whose geometry is controlled by an indirect exchange interaction between iron cations that compete with the thermal motion of atoms in the structure. Structural analysis detected these changes as variations of a number of structural characteristics in the c unit-cell direction, that is, the direction of the helices. Structural results for the local surrounding of the atoms in (Y0.95Bi0.05)Fe3(BO3)4 were confirmed by EXAFS and Mössbauer spectroscopies.

12.
Inorg Chem ; 56(20): 12469-12475, 2017 Oct 16.
Article in English | MEDLINE | ID: mdl-28968099

ABSTRACT

A series of nickel-chromium-ferrite NiFe2-xCrxO4 (with x = 1.25) nanoparticles (NPs) with a cubic spinel structure and with size d ranging from 1.6 to 47.7 nm was synthesized by the solution combustion method. A dual structure of all phonon modes revealed in Raman spectra is associated with metal cations of different types present in the spinel lattice sites. Mössbauer spectra of small NPs exhibit superparamagnetic behavior. However, the transition into the paramagnetic state occurs at a temperature that is unusually high for small particles (TN is about 240 K in the d = 4.5 nm NPs). The larger NPs with d > 20 nm do not exhibit superparamagnetic properties up to the Neel temperature. From the magnetic and Mössbauer data, the cation occupation of the tetrahedral (A) and octahedral [B] sites was determined (Fe0.75Ni0.25)[Ni0.75Cr1.25]O4. The saturation magnetization MS in the largest NPs is about (0.98-0.95) µB, which is more than twice higher the value in bulk ferrite (Fe)[CrNi]O4. At low temperatures the total magnetic moment of the ferrite coincides with the direction of the B-sublattice moment. In the NPs with d > 20 nm, the compensation of the magnetic moments of A- and B-sublattices was revealed at about Tcom = 360-365 K. This value significantly exceeds the point Tcom in bulk ferrites NiFexCr2-xO4 (about 315 K) with the similar Cr concentration. However, in the smaller NPs NiFe0.75Cr1.25O4 with d ≤ 11.7 nm, the compensation effect does not occur. The magnetic anomalies are explained in terms of highly frustrated magnetic ordering in the B sublattice, which appears due to the competition of AFM and FM exchange interactions and results in a canted magnetic structure.

13.
Proc Natl Acad Sci U S A ; 110(18): 7142-7, 2013 Apr 30.
Article in English | MEDLINE | ID: mdl-23589892

ABSTRACT

Ferropericlase [(Mg,Fe)O] is one of the most abundant minerals of the earth's lower mantle. The high-spin (HS) to low-spin (LS) transition in the Fe(2+) ions may dramatically alter the physical and chemical properties of (Mg,Fe)O in the deep mantle. To understand the effects of compression on the ground electronic state of iron, electronic and magnetic states of Fe(2+) in (Mg0.75Fe0.25)O have been investigated using transmission and synchrotron Mössbauer spectroscopy at high pressures and low temperatures (down to 5 K). Our results show that the ground electronic state of Fe(2+) at the critical pressure Pc of the spin transition close to T = 0 is governed by a quantum critical point (T = 0, P = P(c)) at which the energy required for the fluctuation between HS and LS states is zero. Analysis of the data gives P(c) = 55 GPa. Thermal excitation within the HS or LS states (T > 0 K) is expected to strongly influence the magnetic as well as physical properties of ferropericlase. Multielectron theoretical calculations show that the existence of the quantum critical point at temperatures approaching zero affects not only physical properties of ferropericlase at low temperatures but also its properties at P-T of the earth's lower mantle.

14.
Nanotechnology ; 21(23): 235603, 2010 Jun 11.
Article in English | MEDLINE | ID: mdl-20463392

ABSTRACT

Nearly monodisperse CuCr(2)Se(4) hexagon-shaped nanoparticles with crystallite sizes from 15.1 to 24.3 nm were synthesized by thermal decomposition of metal chlorides and selenium powder in oleylamine. In addition, the 'flower'-shaped CuCr(2)Se(4) nanoparticles with a crystallite size 19.8 nm were also fabricated under similar conditions using heptanoic acid. Magnetic measurements show that all samples reveal ferromagnetic behavior below 350 K. The 'flower'-shaped nanoparticles have saturation magnetization, coercivity and remanent magnetization higher than the hexagon-shaped nanoparticles. However, the Curie temperature of the 'flower'-shaped nanoparticles (approximately 380 K) is somewhat lower than in the hexagon-shaped nanoparticles (420-430 K). These phenomena may be associated with the shape and surface anisotropy which would exert a tremendous influence on the particle's magnetic properties.

SELECTION OF CITATIONS
SEARCH DETAIL
...