Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem Lett ; 12(2): 815-821, 2021 Jan 21.
Article in English | MEDLINE | ID: mdl-33416333

ABSTRACT

Silicene, the silicon analogue of graphene, represents a new class of two-dimensional (2D) materials, which shares some of the outstanding physical properties of graphene. Furthermore, it has the advantage of being compatible with the current Si-based technology. However, this 2D material is not stable and is quite prone to oxidation. The hydride-terminated silicene, called silicane, is a more stable form of 2D silicon, if functionalized via, for example, the hydrosilylation reaction. In this work, the third-order nonlinear optical (NLO) properties of two functionalized silicanes, namely hydride-terminated silicon nanosheets (SiNS-H) and 1-dodecene-functionalized silicon nanosheets (SiNS-dodecene), are accessed and compared to those of single-layer graphene, under 35 ps, 532 and 1064 nm excitation. The present results show that the functionalized silicanes exhibit comparable and even higher NLO response than that of single-layer graphene, making them strong competitors of graphene and very interesting candidates for future photonic and optoelectronic applications.

2.
Adv Mater ; 33(8): e2006395, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33314478

ABSTRACT

Although single-wall carbon nanotubes (SWCNTs) exhibit various colors in suspension, directly synthesized SWCNT films usually appear black. Recently, a unique one-step method for directly fabricating green and brown films has been developed. Such remarkable progress, however, has brought up several new questions. The coloration mechanism, potentially achievable colors, and color controllability of SWCNTs are unknown. Here, a quantitative model is reported that can predict the specific colors of SWCNT films and unambiguously identify the coloration mechanism. Using this model, colors of 466 different SWCNT species are calculated, which reveals a broad spectrum of potentially achievable colors of SWCNTs. The calculated colors are in excellent agreement with existing experimental data. Furthermore, the theory predicts the existence of many brilliantly colored SWCNT films, which are experimentally expected. This study shows that SWCNTs as a form of pure carbon, can display a full spectrum of vivid colors, which is expected to complement the general understanding of carbon materials.

3.
Nanomaterials (Basel) ; 12(1)2021 Dec 29.
Article in English | MEDLINE | ID: mdl-35010042

ABSTRACT

The present work reports on the transient nonlinear optical (NLO) responses of two different types of 2D silicon nanosheets (SiNSs), namely hydride-terminated silicon nanosheets (SiNS-H) and 1-dodecene-functionalized silicon nanosheets (SiNS-dodecene). The main motivation of this study was to extend the knowledge regarding the NLO properties of these Si-based materials, for which very few published studies exist so far. For that purpose, the NLO responses of SiNS-H and SiNS-dodecene were investigated experimentally in the nanosecond regime at 532 and 1064 nm using the Z-scan technique, while the obtained results were compared to those of certain recently studied graphene nanosheets. SiNS-dodecene was found to exhibit the largest third-order susceptibility χ(3) values at both excitation wavelengths, most probably ascribed to the presence of point defects, indicating the importance of chemical functionalization for the efficient enhancement and tailoring of the NLO properties of these emerging 2D Si-based materials. Most importantly, the results demonstrated that the present silicon nanosheets revealed comparable and even larger NLO responses than graphene nanosheets. Undoubtedly, SiNSs could be strong competitors of graphene for applications in 2D-material-based photonics and optoelectronics.

SELECTION OF CITATIONS
SEARCH DETAIL
...