Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
J Air Waste Manag Assoc ; 67(11): 1258-1271, 2017 11.
Article in English | MEDLINE | ID: mdl-28718709

ABSTRACT

This study sought to fill the gap in information about the type and the concentration of bioaerosols present in the air of biomethanization facilities (BF). Evaluation of bioaerosol composition and concentration was achieved in two biomethanization facilities located in Eastern Canada, during summer and winter. In order to have a thorough understanding of the studied environment, the methodology combined culture of bacteria and molds, qualitiative polymerase chain reaction (qPCR) for specific microorganisms, endotoxin quantification, and next-generation sequencing (NGS) for bacterial diversity. Results revealed that workers in biomethanization facilities are exposed to bioaerosols and pathogenic microorganisms similar to those found in composting plants. However, human exposure levels to bioaerosols are lower in BF than in composting plants. Despite these differences, use of personal protective equipment is recommended to lower the risks of health problems. IMPLICATIONS: Biomethanization is a new technology used in eastern Canada for waste management. In the next few years, it is expected that there will be an expansion of facilities in response of tight governmental regulations. Workers in biomethanization facilities are exposed to various amounts of bioaerosols composed of some harmful microorganisms. Therefore, monitoring this occupational exposure could be an interesting tool for improving worker's health.


Subject(s)
Aerosols/analysis , Occupational Exposure/analysis , Waste Management , Air Microbiology , Bacteria/isolation & purification , Canada , Endotoxins/analysis , Fungi/isolation & purification , Humans
2.
J Occup Environ Hyg ; 14(10): 815-822, 2017 10.
Article in English | MEDLINE | ID: mdl-28636488

ABSTRACT

Composting is a natural dynamic biological process used to valorise putrescible organic matter. The composting process can involve vigorous movements of waste material piles, which release high concentrations of bioaerosols into the surrounding environment. There is a lack of knowledge concerning the dispersal of airborne microorganisms emitted by composting plants (CP) as well as the potential occupational exposure of composting workers. The aim of this study was to investigate the workers exposure to bioaerosols during working activities in three different types of composting facilities (domestic, manure, carcass) using two different quantification methods (cultivation and qPCR) for bacteria and moulds concentrations. As expected, even if there are differences between all CP frameworks, independently of the type of the raw compost used, the production of bioaerosols increases significantly during handling activities. Important concentrations of mesophilic moulds and mesophilic bacteria were noted in the working areas with a respective maximal concentration of 2.3 × 105 CFU/m3 and 1.6 × 105 CFU/m3. A. fumigatus and thermophilic Actinomycetes were also detected in all working areas for the 3 CP. This study emphases the risks for workers to being in contact with aerosolized pathogens such as Mycobacterium and Legionella and more specifically, L. pneumophila. The presence of high concentration of these bacteria in CP suggests a potential occupational health risk. This study may lead to recommendations for the creation of limits for occupational exposure. There is a need for identifying the standards exposure limits to bioaerosols in CP and efficient recommendation for a better protection of workers' health.


Subject(s)
Air Microbiology , Composting , Occupational Exposure/analysis , Aerosols/analysis , Air Pollutants, Occupational/analysis , Animals , Bacteria/isolation & purification , Environmental Monitoring/methods , Fungi/isolation & purification , Humans , Manure , Quebec , Swine
SELECTION OF CITATIONS
SEARCH DETAIL