Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Publication year range
2.
J Appl Physiol (1985) ; 71(4): 1355-63, 1991 Oct.
Article in English | MEDLINE | ID: mdl-1757358

ABSTRACT

The effects of hypoxia (inspired O2 fraction = 0.12) on thermoregulation and on the different sources of thermogenesis were studied in rats before and after periods of 1-4 wk of cold acclimation. Measurements of metabolic rate (VO2) and body temperature (Tb) were made at 5-min intervals, and shivering activity was recorded continuously in groups of rats subjected to three protocols. In protocol 1, rats were exposed to normoxia to an ambient temperature (Ta) of 5 degrees C for 2 h. In protocol 2, at Ta of 5 degrees C, rats were exposed for 30 min to normoxia, then for 45 min to hypoxia, and finally for 30 min to normoxia. In protocol 3, in the non-cold-acclimated (NCA) rats, Ta was decreased from 30 to 5 degrees C in steps of 5 degrees C and of 30-min duration while in cold-acclimated (CA) rats at 5 degrees C for 4-wk, Ta was increased from 5 to 30 degrees C in steps of 5 degrees C and of 30-min duration. Recordings were made in normoxia and in hypoxia on different days in the same animals. The results showed that 1) in NCA rats, cold exposure in normoxia induced increases in VO2 and shivering that were proportional to the decrease in Ta; 2) in CA rats in normoxia, for a given Ta, VO2 and Tb were higher than in NCA rats, whereas shivering was generally lower; and 3) in both NCA and CA rats, hypoxia induced a transient decrease in shivering and a sustained decrease in nonshivering thermogenesis associated with a marked decrease in Tb that was about the same in NCA and CA rats. We speculate that hypoxia acts on Tb control to produce a general inhibition of thermogenesis. Nonshivering thermogenesis is markedly sensitive to hypoxia, especially demonstrable in CA rats; a recovery or even an increase in shivering can compensate for the decrease in nonshivering thermogenesis.


Subject(s)
Acclimatization/physiology , Body Temperature Regulation/physiology , Cold Temperature , Hypoxia/physiopathology , Animals , Body Weight/physiology , Electromyography , Female , Oxygen Consumption/physiology , Rats , Rats, Inbred Strains , Shivering/physiology
3.
J Reprod Fertil ; 91(2): 557-66, 1991 Mar.
Article in English | MEDLINE | ID: mdl-2013879

ABSTRACT

Plasma progesterone concentrations and the occurrence of oestrous cycles were studied in isolated woolly opossums subsequently subjected to male influences during a 40-day period. Pairing (N = 48) or exposure to male urine (N = 15) resulted in all females exhibiting oestrous during the stimulation phase, providing evidence that the activation of ovarian activity in the woolly opossum involves pheromonal cues from males. The latency of occurrence of oestrous in stimulated females depended upon their sexual state before male stimulation. In anoestrous females, the mean latency was 20.7 +/- 0.9 days (N = 35), a value which agrees with the duration of the follicular phase. In females which first entered oestrous before male stimulation, the latency of induced oestrous was inversely correlated to the date of occurrence of the previous oestrous. The inter-oestrous interval was normal (38.1 +/- 1 days, N = 5) when females were in oestrous at the beginning of male stimulation. In contrast, the inter-oestrous interval was significantly shortened (28.7 +/- 2 days, N = 7) or lengthened (51.1 +/- 1.7 days, N = 16) depending on whether females were in the luteal or follicular phases at the beginning of male stimulation. During pairing several females became pregnant and gave birth 24 +/- 0.9 days (N = 13) after copulation. In the woolly opossum, the response to male influences involves mechanisms similar to those observed in eutherians and results in enhancement and synchronization of oestrous cycles in females. Pheromonal interactions could play an important role in synchronizing oestrous cycles in wild females during the dry season, a period when animals regroup to feed on spatially localized food resources.


Subject(s)
Estrus/physiology , Opossums/physiology , Sex Attractants/physiology , Animals , Estrus Synchronization/physiology , Female , Male , Ovary/physiology , Progesterone/blood , Urine/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...