Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Plant Biol ; 20(1): 373, 2020 Aug 08.
Article in English | MEDLINE | ID: mdl-32770962

ABSTRACT

BACKGROUND: Taproot is the main edible organ and ultimately determines radish yield and quality. However, the precise molecular mechanism underlying taproot thickening awaits further investigation in radish. Here, RNA-seq was performed to identify critical genes involved in radish taproot thickening from three advanced inbred lines with different root size. RESULTS: A total of 2606 differentially expressed genes (DEGs) were shared between 'NAU-DY' (large acicular) and 'NAU-YB' (medium obovate), which were significantly enriched in 'phenylpropanoid biosynthesis', 'glucosinolate biosynthesis', and 'starch and sucrose metabolism' pathway. Meanwhile, a total of 16 differentially expressed miRNAs (DEMs) were shared between 'NAU-DY' and 'NAU-YH' (small circular), whereas 12 miRNAs exhibited specific differential expression in 'NAU-DY'. Association analysis indicated that miR393a-bHLH77, miR167c-ARF8, and miR5658-APL might be key factors to biological phenomenon of taproot type variation, and a putative regulatory model of taproot thickening and development was proposed. Furthermore, several critical genes including SUS1, EXPB3, and CDC5 were characterized and profiled by RT-qPCR analysis. CONCLUSION: This integrated study on the transcriptional and post-transcriptional profiles could provide new insights into comprehensive understanding of the molecular regulatory mechanism underlying taproot thickening in root vegetable crops.


Subject(s)
Plant Roots/growth & development , Raphanus/growth & development , Gene Expression Profiling , Gene Expression Regulation, Plant , Gene Library , Genes, Plant , MicroRNAs/metabolism , Plant Roots/genetics , RNA, Messenger/metabolism , RNA, Plant/metabolism , RNA-Seq , Raphanus/genetics , Real-Time Polymerase Chain Reaction
2.
Gene ; 718: 144048, 2019 Nov 15.
Article in English | MEDLINE | ID: mdl-31421189

ABSTRACT

Main conclusion Among 247 RsAP2/ERF identified, the majority of the 21 representatives were preferably expressed under drought and heat while suppressed under heavy metals, indicating their potential roles in abiotic stress responses and tolerance. APETALA2/Ethylene-Responsive factor (AP2/ERF) transcription factor (TF) is one of the largest gene families in plants that play a fundamental role in growth and development as well as biotic and/or abiotic stresses responses. Although AP2/ERFs have been extensively characterized in many plant species, little is known about this family in radish, which is an important root vegetable with various medicinal properties. The available genome provides valuable opportunity to identify and characterize the global information on AP2/ERF TFs in radish. In this study, a total of 247 ERF family genes were identified from the radish genome, and sequence alignment and phylogenetic analyses classified the AP2/ERF superfamily into five groups (AP2, ERF, DREB, RAV and soloist). Motif analysis showed that other than AP2/ERF domains, other conserved regions were selectively distributed among different clades in the phylogenetic tree. Chromosome location analysis showed that tandem duplication may result in the expansion of RsAP2/ERF gene family. The RT-qPCR analysis confirmed that a proportion of AP2/ERF genes were preferably expressed under drought and heat stresses, whereas they were suppressed under the ABA and heavy metal stresses. These results provided valuable information for further evolutionary and functional characterization of RsAP2/ERF genes, and contributed to genetic improvement of stress tolerances in radish and other root vegetable crops.


Subject(s)
Evolution, Molecular , Homeodomain Proteins , Metals, Heavy/toxicity , Multigene Family , Nuclear Proteins , Phylogeny , Plant Proteins , Raphanus , Stress, Physiological/drug effects , Genome-Wide Association Study , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Raphanus/genetics , Raphanus/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...