Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Metabolites ; 12(3)2022 Mar 13.
Article in English | MEDLINE | ID: mdl-35323684

ABSTRACT

Three genetically determined enzyme defects of purine de novo synthesis (PDNS) have been identified so far in humans: adenylosuccinate lyase (ADSL) deficiency, 5-amino-4-imidazole carboxamide-ribosiduria (AICA-ribosiduria), and deficiency in bifunctional enzyme phosphoribosylaminoimidazole carboxylase and phosphoribosylaminoimidazolesuccinocarboxamide synthase (PAICS). Clinical signs of these defects are mainly neurological, such as seizures, psychomotor retardation, epilepsy, autistic features, etc. This work aims to describe the metabolic changes of CRISPR-Cas9 genome-edited HeLa cells deficient in the individual steps of PDNS to better understand known and potential defects of the pathway in humans. High-performance liquid chromatography coupled with mass spectrometry was used for both targeted and untargeted metabolomic analyses. The statistically significant features from the untargeted study were identified by fragmentation analysis. Data from the targeted analysis were processed in Cytoscape software to visualize the most affected metabolic pathways. Statistical significance of PDNS intermediates preceding deficient enzymes was the highest (p-values 10 × 10-7-10 × 10-15) in comparison with the metabolites from other pathways (p-values of up to 10 × 10-7). Disturbed PDNS resulted in an altered pool of adenine and guanine nucleotides. However, the adenylate energy charge was not different from controls. Different profiles of acylcarnitines observed among deficient cell lines might be associated with a specific enzyme deficiency rather than global changes related to the PDNS pathway. Changes detected in one-carbon metabolism might reduce the methylation activity of the deficient cells, thus affecting the modification state of DNA, RNA, and proteins.

2.
JIMD Rep ; 54(1): 79-86, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32685354

ABSTRACT

3-Hydroxy-3-methylglutaryl-coenzyme A lyase deficiency (HMGCLD) is a rare autosomal recessively inherited metabolic disorder. Patients suffer from avoidable neurologically devastating metabolic decompensations and thus would benefit from newborn screening (NBS). The diagnosis is currently made by measuring dry blood spot acylcarnitines (C5OH and C6DC) followed by urinary organic acid profiling for the differential diagnosis from several other disorders. Using untargeted metabolomics (reversed-phase UHPLC coupled to an Orbitrap Elite hybrid mass spectrometer) of plasma samples from 5 HMGCLD patients and 19 age-matched controls, we found 3-methylglutaconic acid and 3-hydroxy-3-methylglutaric acid, together with 3-hydroxyisovalerylcarnitine as the most discriminating metabolites between the groups. In order to evaluate the NBS potential of these metabolites we quantified the most discriminating metabolites from untargeted metabolomics in 23 blood spots from 4 HMGCLD patients and 55 controls by UHPLC tandem mass spectrometry. The results provide a tool for expanded NBS of HMGCLD using tandem mass spectrometry. Selected reaction monitoring transition 262/85 could be used in a first-tier NBS analysis to screen for elevated 3-hydroxyisovalerylcarnitine. In a positive case, a second-tier analysis of 3-hydroxy-3-methylglutaric acid and 3-methylglutaconic acid in a dry blood spot using UHPLC tandem mass spectrometry instruments confirms the diagnosis. In conclusion, we describe the identification of new diagnostic biomarkers for HMGCLD and their application in NBS in dry blood spots. By using second-tier testing, all patients with HMGCLD were unequivocally and correctly diagnosed.

3.
PLoS One ; 13(12): e0208947, 2018.
Article in English | MEDLINE | ID: mdl-30532129

ABSTRACT

Purines are essential molecules for all forms of life. In addition to constituting a backbone of DNA and RNA, purines play roles in many metabolic pathways, such as energy utilization, regulation of enzyme activity, and cell signaling. The supply of purines is provided by two pathways: the salvage pathway and de novo synthesis. Although purine de novo synthesis (PDNS) activity varies during the cell cycle, this pathway represents an important source of purines, especially for rapidly dividing cells. A method for the detailed study of PDNS is lacking for analytical reasons (sensitivity) and because of the commercial unavailability of the compounds. The aim was to fully describe the mass spectrometric fragmentation behavior of newly synthesized PDNS-related metabolites and develop an analytical method. Except for four initial ribotide PDNS intermediates that preferentially lost water or phosphate or cleaved the forming base of the purine ring, all the other metabolites studied cleaved the glycosidic bond in the first fragmentation stage. Fragmentation was possible in the third to sixth stages. A liquid chromatography-high-resolution mass spectrometric method was developed and applied in the analysis of CRISPR-Cas9 genome-edited HeLa cells deficient in the individual enzymatic steps of PDNS and the salvage pathway. The identities of the newly synthesized intermediates of PDNS were confirmed by comparing the fragmentation patterns of the synthesized metabolites with those produced by cells (formed under pathological conditions of known and theoretically possible defects of PDNS). The use of stable isotope incorporation allowed the confirmation of fragmentation mechanisms and provided data for future fluxomic experiments. This method may find uses in the diagnosis of PDNS disorders, the investigation of purinosome formation, cancer research, enzyme inhibition studies, and other applications.


Subject(s)
DNA/biosynthesis , Purines/biosynthesis , RNA/biosynthesis , Tandem Mass Spectrometry , CRISPR-Cas Systems , Chromatography, Liquid , DNA/chemistry , Gene Editing , HeLa Cells , Humans , Purines/chemistry , RNA/chemistry
4.
J Vet Intern Med ; 32(5): 1768-1772, 2018 Sep.
Article in English | MEDLINE | ID: mdl-30216546

ABSTRACT

The case of atypical myopathy (AM) in newborn Haflinger foal with clinical signs of depression and weakness appearing 6 hours after birth resulting in recumbency 12 hours after birth is described. The foal's dam was diagnosed with AM in the 6th month of gestation based on clinical signs of a myopathy, elevated serum activity of creatine kinase, metabolomic analysis and the presence of methylenecyclopropyl acetyl carnitine (MCPA-carnitine) in the blood. At the time of delivery, the mare was grazing on a pasture near sycamore trees but was free of clinical signs of AM. Metabolomic analysis of the foal's blood revealed increased concentrations of acylcarnitines and MCPA-carnitine consistent with metabolic profiles of blood from AM affected horses. Two theories could explain this observation (a) hypoglycin A or its metabolites accumulated in the mare's placenta with consequent transfer to fetus or (b) these compounds were secreted into mare's milk.


Subject(s)
Animals, Newborn , Carnitine/analogs & derivatives , Horse Diseases/pathology , Muscular Diseases/veterinary , Animals , Carnitine/blood , Genetic Predisposition to Disease , Horse Diseases/diagnosis , Horses , Muscular Diseases/diagnosis
5.
J Inherit Metab Dis ; 41(3): 407-414, 2018 05.
Article in English | MEDLINE | ID: mdl-29139026

ABSTRACT

Specific diagnostic markers are the key to effective diagnosis and treatment of inborn errors of metabolism (IEM). Untargeted metabolomics allows for the identification of potential novel diagnostic biomarkers. Current separation techniques coupled to high-resolution mass spectrometry provide a powerful tool for structural elucidation of unknown compounds in complex biological matrices. This is a proof-of-concept study testing this methodology to determine the molecular structure of as yet uncharacterized m/z signals that were significantly increased in plasma samples from patients with phenylketonuria and 3-hydroxy-3-methylglutaryl-CoA lyase deficiency. A hybrid linear ion trap-orbitrap high resolution mass spectrometer, capable of multistage fragmentation, was used to acquire accurate masses and product ion spectra of the uncharacterized m/z signals. In order to determine the molecular structures, spectral databases were searched and fragmentation prediction software was used. This approach enabled structural elucidation of novel compounds potentially useful as biomarkers in diagnostics and follow-up of IEM patients. Two new conjugates, glutamyl-glutamyl-phenylalanine and phenylalanine-hexose, were identified in plasma of phenylketonuria patients. These novel markers showed high inter-patient variation and did not correlate to phenylalanine levels, illustrating their potential added value for follow-up. As novel biomarkers for 3-hydroxy-3-methylglutaryl-CoA lyase deficiency, three positional isomers of 3-methylglutaconyl carnitine could be detected in patient plasma. Our results highlight the applicability of current accurate mass multistage fragmentation techniques for structural elucidation of unknown metabolites in human biofluids, offering an unprecedented opportunity to gain further biochemical insights in known inborn errors of metabolism by enabling high confidence identification of novel biomarkers.


Subject(s)
Biomarkers/analysis , Biomarkers/chemistry , Chemical Fractionation/methods , Metabolic Diseases/diagnosis , Metabolomics/methods , Tandem Mass Spectrometry/methods , Acetyl-CoA C-Acetyltransferase/blood , Acetyl-CoA C-Acetyltransferase/deficiency , Amino Acid Metabolism, Inborn Errors/blood , Amino Acid Metabolism, Inborn Errors/diagnosis , Biomarkers/blood , Chromatography, Liquid , Female , Humans , Male , Metabolic Diseases/blood , Metabolism, Inborn Errors/blood , Metabolism, Inborn Errors/diagnosis , Metabolome , Molecular Conformation , Phenylketonurias/blood , Phenylketonurias/diagnosis , Reproducibility of Results , Software
6.
Talanta ; 139: 62-6, 2015 Jul 01.
Article in English | MEDLINE | ID: mdl-25882409

ABSTRACT

Inborn errors of metabolism encompass a large group of diseases caused by enzyme deficiencies and are therefore amenable to metabolomics investigations. Medium chain acyl-CoA dehydrogenase deficiency (MCADD) is a defect in ß-oxidation of fatty acids, and is one of the most well understood disorders. We report here the use of liquid chromatography-mass spectrometry (LC-MS) based untargeted metabolomics and targeted flow injection analysis-tandem mass spectrometry (FIA-TMS) that lead to discovery of novel compounds of oxidative stress. Dry blood spots of controls (n=25) and patient samples (n=25) were extracted by methanol/water (1/1, v/v) and these supernatants were analyzed by LC-MS method with detection by an Orbitrap Elite MS. Data were processed by XCMS and CAMERA followed by dimension reduction methods. Patients were clearly distinguished from controls in PCA. S-plot derived from OPLS-DA indicated that medium-chain acylcarnitines (octanoyl, decenoyl and decanoyl carnitines) as well as three phosphatidylcholines (PC(16:0,9:0(COOH))), PC(18:0,5:0(COOH)) and PC(16:0,8:0(COOH)) were important metabolites for differentiation between patients and healthy controls. In order to biologically validate these discriminatory molecules as indicators for oxidative stress, a second cohort of individuals were analyzed, including MCADD (n=25) and control (n=250) samples. These were measured by a modified newborn screening method using FIA-TMS (API 4000) in MRM mode. Calculated p-values for PC(16:0,9:0(COOH)), PC(18:0,5:0(COOH)) and PC(16:0,8:0(COOH)) were 1.927×10(-14), 2.391×10(-15) and 3.354×10(-15) respectively. These elevated oxidized phospholipids indeed show an increased presence of oxidative stress in MCADD patients as one of the pathophysiological mechanisms of the disease.


Subject(s)
Acyl-CoA Dehydrogenase/deficiency , Biomarkers/blood , Lipid Metabolism, Inborn Errors/blood , Lipid Metabolism, Inborn Errors/pathology , Metabolome , Oxidative Stress , Phosphatidylcholines/chemistry , Tandem Mass Spectrometry/methods , Acyl-CoA Dehydrogenase/blood , Case-Control Studies , Humans , Infant, Newborn , Neonatal Screening , Oxidation-Reduction , Pilot Projects
SELECTION OF CITATIONS
SEARCH DETAIL
...