Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Condens Matter ; 26(48): 485007, 2014 Dec 03.
Article in English | MEDLINE | ID: mdl-25352186

ABSTRACT

Highly oriented pyrolytic graphite (HOPG) is an important substrate in many technological applications and is routinely used as a standard in Scanning Tunnelling Microscopy (STM) calibration, which makes the accurate interpretation of the HOPG STM contrast of great fundamental and applicative importance. We demonstrate by STM simulations based on electronic structure obtained from first principles that the relative local orientation of the STM-tip apex with respect to the HOPG substrate has a considerable effect on the HOPG STM contrast. Importantly for experimental STM analysis of HOPG, the simulations indicate that local tip-rotations maintaining a major contribution of the d(3z(2)-r(2)) tip-apex state to the STM current affect only the secondary features of the HOPG STM contrast resulting in 'stripe' formation and leaving the primary contrast unaltered. Conversely, tip-rotations leading to enhanced contributions from m ≠ 0 tip-apex electronic states can cause a triangular-hexagonal change in the primary contrast. We also report a comparison of two STM simulation models with experiments in terms of bias-voltage-dependent STM topography brightness correlations and discuss our findings for the HOPG(0 0 0 1) surface in combination with tungsten tip models of different sharpnesses and terminations.

2.
J Phys Condens Matter ; 25(44): 445009, 2013 Nov 06.
Article in English | MEDLINE | ID: mdl-24121301

ABSTRACT

We extend the orbital-dependent electron tunnelling model implemented within the three-dimensional (3D) Wentzel-Kramers-Brillouin (WKB) atom-superposition approach for simulating scanning tunnelling microscopy (STM) by including arbitrary tip orientations. The orientation of the tip is characterized by a local coordinate system centred on the tip apex atom obtained by a rotation with respect to the sample coordinate system. The rotation is described by the Euler angles. Applying our method, we highlight the role of the real-space shape of the electron orbitals involved in the tunnelling, and analyse the convergence and the orbital contributions of the tunnelling current above the W(110) surface depending on the orientation of a model tungsten tip. We also simulate STM images at constant-current condition, and find that their quality depends very much on the tip orientation. Some orientations result in protrusions on the images that do not occur above W atoms. The presence of such apparent atom positions makes it difficult to identify the exact position of surface atoms. It is suggested that this tip orientation effect should be considered in the evaluation of experimental STM images on other surfaces as well. The presented computationally efficient tunnelling model could prove to be useful for obtaining more information on the local tip geometry and orientation by comparing STM experiments to a large number of simulations with systematically varied tip orientations.

SELECTION OF CITATIONS
SEARCH DETAIL
...