Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Fungi (Basel) ; 7(7)2021 Jul 07.
Article in English | MEDLINE | ID: mdl-34356922

ABSTRACT

Bisphenol A (BPA) is a major component of the most commonly used plastic products, such as disposable plastics, Tetra Paks, cans, sport protective equipment, or medical devices. Due to the accumulation of excessive amounts of plastic waste and the subsequent release of BPA into the environment, BPA is classified as a pollutant that is undesirable in the environment. To date, the most interesting finding is the ability of BPA to act as an endocrine disrupting compound due to its binding to estrogen receptors (ERs), and adverse physiological effects on living organisms may result from this action. Since evidence of the potential pro-oxidizing effects of BPA has accumulated over the last years, herein, we focus on the detection of oxidative stress and its origin following BPA exposure using pulsed-field gel electrophoresis, flow cytometry, fluorescent microscopy, and Western blot analysis. Saccharomyces cerevisiae cells served as a model system, as these cells lack ERs allowing us to dissect the ER-dependent and -independent effects of BPA. Our data show that high concentrations of BPA affect cell survival and cause increased intracellular oxidation in yeast, which is primarily generated in the mitochondrion. However, an acute BPA exposure does not lead to significant oxidative damage to DNA or proteins.

2.
Molecules ; 23(2)2018 Feb 24.
Article in English | MEDLINE | ID: mdl-29495287

ABSTRACT

Resveratrol is a natural (poly)phenol primarily found in plants protecting them against pathogens, as well as harmful effects of physical and chemical agents. In higher eukaryotic cells and organisms, this compound displays a remarkable range of biological activities, such as anti-oxidant, anti-inflammatory, anti-cancer, anti-aging, cardio- and neuro-protective properties. Here, biological activities of synthetic selenium-containing derivatives of resveratrol-benzo[b]selenophenes-have been studied in lower eukaryotes Saccharomyces cerevisiae. Their toxicity, as well as DNA damaging and reactive oxygen species (ROS) inducing potencies, manifested through their ability to act as redox active anti-microbial agents, have been examined. We show that some benzo[b]selenophenes can kill yeast cells and that the killing effects are not mediated by DNA damage types that can be detected as DNA double-strand breaks. These benzo[b]selenophenes could potentially be used as anti-fungal agents, although their concentrations relevant to application in humans need to be further evaluated. In addition, most of the studied benzo[b]selenophenes display redox-modulating/anti-oxidant activity (comparable or even higher than that of resveratrol or Trolox) causing a decrease in the intracellular ROS levels in yeast cells. Therefore, after careful re-evaluation in other biological systems these observations might be transferred to humans, where resveratrol-inspired benzo[b]selenophenes could be used as supra-anti-oxidant supplements.


Subject(s)
Antioxidants/chemistry , Antioxidants/pharmacology , Organoselenium Compounds/chemistry , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/metabolism , Stilbenes/chemistry , Stilbenes/pharmacology , DNA Breaks, Double-Stranded/drug effects , DNA Damage/drug effects , Microbial Viability/drug effects , Molecular Structure , Reactive Oxygen Species/metabolism , Resveratrol
3.
Molecules ; 19(8): 12258-79, 2014 Aug 13.
Article in English | MEDLINE | ID: mdl-25123189

ABSTRACT

Redox-modulating compounds derived from natural sources, such as redox active secondary metabolites, are currently of considerable interest in the field of chemoprevention, drug and phytoprotectant development. Unfortunately, the exact and occasionally even selective activity of such products, and the underlying (bio-)chemical causes thereof, are often only poorly understood. A combination of the nematode- and yeast-based assays provides a powerful platform to investigate a possible biological activity of a new compound and also to explore the "redox link" which may exist between its activity on the one side and its chemistry on the other. Here, we will demonstrate the usefulness of this platform for screening several selenium and tellurium compounds for their activity and action. We will also show how the nematode-based assay can be used to obtain information on compound uptake and distribution inside a multicellular organism, whilst the yeast-based system can be employed to explore possible intracellular mechanisms via chemogenetic screening and intracellular diagnostics. Whilst none of these simple and easy-to-use assays can ultimately substitute for in-depth studies in human cells and animals, these methods nonetheless provide a first glimpse on the possible biological activities of new compounds and offer direction for more complicated future investigations. They may also uncover some rather unpleasant biochemical actions of certain compounds, such as the ability of the trace element supplement selenite to induce DNA strand breaks.


Subject(s)
Cytoplasm/drug effects , Models, Biological , Oxidation-Reduction/drug effects , Selenium Compounds/administration & dosage , Animals , Cytoplasm/chemistry , DNA Damage/drug effects , Humans , Nematoda , Saccharomyces cerevisiae , Selenium Compounds/chemistry , Tellurium/administration & dosage , Tellurium/chemistry
4.
Chem Res Toxicol ; 25(8): 1598-608, 2012 Aug 20.
Article in English | MEDLINE | ID: mdl-22747191

ABSTRACT

Selenium (Se) is a trace element that is essential for human health as it takes part in many cellular processes. The cellular response to this compound elicits very diverse processes including DNA damage response and repair. Because an inorganic form of Se, sodium selenite (SeL), has often been a part of numerous studies and because this form of Se is used as a dietary supplement by the public, here, we elucidated mechanisms of SeL-induced toxicity in yeast Saccharomyces cerevisiae using a combination of systematic genetic and transcriptome analysis. First, we screened the yeast haploid deletion mutant library for growth in the presence of this Se compound. We identified 39 highly SeL sensitive mutants. The corresponding deleted genes encoded mostly proteins involved in DNA damage response and repair, vacuole function, glutathione (GSH) metabolism, transcription, and chromatin metabolism. DNA damage response and repair mutants were examined in more detail: a synergistic interaction between postreplication (PRR) and homologous recombination (HRR) repair pathways was revealed. In addition, the effect of combined defects in HRR and GSH metabolism was analyzed, and again, the synergistic interaction was found. Second, microarray analysis was used to reveal expression profile changes after SeL exposure. The gene process categories "amino acid metabolism" and "generation of precursor metabolites and energy" comprised the greatest number of induced and repressed genes, respectively. We propose that SeL-induced toxicity markedly results from DNA injury, thereby highlighting the importance of DNA damage response and repair pathways in protecting cells against toxic effects of this Se compound. In addition, we suggest that SeL toxicity also originates from damage to cellular proteins, including those acting in DNA damage response and repair.


Subject(s)
Saccharomyces cerevisiae/drug effects , Sodium Selenite/toxicity , Chromatin/metabolism , DNA Repair/drug effects , Glutathione/metabolism , Homologous Recombination/drug effects , Microarray Analysis , Mutation , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Sodium Selenite/chemistry , Transcriptome/drug effects
5.
Arch Toxicol ; 84(12): 919-38, 2010 Dec.
Article in English | MEDLINE | ID: mdl-20871980

ABSTRACT

Selenium (Se) is an essential dietary component for animals including humans and is regarded as a protective agent against cancer. Although the mode of anticancer action of Se is not fully understood yet, several mechanisms, such as antioxidant protection by selenoenzymes, specific inhibition of tumor cell growth by Se metabolites, modulation of cell cycle and apoptosis, and effect on DNA repair have all been proposed. Despite the unsupported results of the last SELECT trial, the cancer-preventing activity of Se was demonstrated in majority of the epidemiological studies. Moreover, recent studies suggest that Se has a potential to be used not only in cancer prevention but also in cancer treatment where in combination with other anticancer drugs or radiation, it can increase efficacy of cancer therapy. In combating cancer cells, Se acts as pro-oxidant rather than antioxidant, inducing apoptosis through the generation of oxidative stress. Thus, the inorganic Se compound, sodium selenite (SeL), due to its prooxidant character, represents a promising alternative for cancer therapy. However, this Se compound is highly toxic compared to organic Se forms. Thus, the unregulated intake of dietary or pharmacological Se supplements mainly in the form of SeL has a potential to expose the body tissues to the toxic levels of Se with subsequent negative consequences on DNA integrity. Hence, due to a broad interest to exploit the positive effects of Se on human health and cancer therapy, studies investigating the negative effects such as toxicity and DNA damage induction resulting from high Se intake are also highly required. Here, we review a role of Se in cancer prevention and cancer therapy, as well as mechanisms underlying Se-induced toxicity and DNA injury. Since Saccharomyces cerevisiae has proven a powerful tool for addressing some important questions regarding Se biology, a part of this review is devoted to this model system.


Subject(s)
Neoplasms/prevention & control , Selenium/administration & dosage , Selenium/pharmacology , Selenium/toxicity , Antioxidants/pharmacology , Apoptosis/drug effects , Apoptosis/genetics , Cell Cycle/drug effects , Cell Cycle/genetics , DNA Damage , DNA Repair/drug effects , Dietary Supplements , Humans , Neoplasms/drug therapy , Neoplasms/genetics , Oxidative Stress/drug effects , Oxidative Stress/genetics , Reactive Oxygen Species/pharmacology , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/genetics , Selenium Compounds/pharmacology , Sodium Selenite/pharmacology
6.
Mutagenesis ; 25(2): 155-62, 2010 Mar.
Article in English | MEDLINE | ID: mdl-19955329

ABSTRACT

Selenium (Se) belongs to nutrients that are essential for human health. Biological activity of this compound, however, mainly depends on its dose, with a potential of Se to induce detrimental effects at high doses. Although mechanisms lying behind detrimental effects of Se are poorly understood yet, they involve DNA damage induction. Consequently, DNA damage response and repair pathways may play a crucial role in cellular response to Se. Using Saccharomyces cerevisiae we showed that sodium selenite (SeL), an inorganic form of Se, can be toxic and mutagenic in this organism due to its ability to induce DNA double-strand breaks (DSBs). Moreover, we reported that a spectrum of mutations induced by this compound in the stationary phase of growth is mainly represented by 1-4 bp deletions. Consequently, we proposed that SeL acts as an oxidizing agent in yeast producing oxidative damage to DNA. As short deletions could be anticipated to arise as a result of action of non-homologous end-joining (NHEJ) and oxidative damage to DNA is primarily coped with base excision repair (BER), a contribution of these two pathways towards survival, DSB induction, mutation frequency and types of mutations following SeL exposure was examined in present study. First, we show that while NHEJ plays no role in repairing toxic DNA lesions induced by SeL, cells with impairment in BER are sensitized towards this compound. Of BER activities examined, those responsible for processing of 3'-blocking DNA termini seem to be the most crucial for manifestation of the toxic effects of SeL in yeast. Second, an impact of NHEJ and BER on DSB induction after SeL exposure turned to be inappreciable, as no increase in DNA double-strand breakage in NHEJ and BER single or NHEJ BER double mutant upon SeL exposure was observed. Finally, we demonstrate that impairment in both these pathways does not importantly change mutation frequency after SeL exposure and that NHEJ is not responsible for generation of short deletions after SeL treatment, as these were comparably induced in the wild-type and NHEJ-defective cells.


Subject(s)
DNA Breaks, Double-Stranded/drug effects , DNA Repair/drug effects , Recombination, Genetic/drug effects , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/genetics , Sodium Selenite/toxicity , Amino Acid Transport Systems, Basic/genetics , Cell Survival/drug effects , Mutation/genetics , Saccharomyces cerevisiae/growth & development , Saccharomyces cerevisiae Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...