Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 123(18): 181101, 2019 Nov 01.
Article in English | MEDLINE | ID: mdl-31763897

ABSTRACT

The origins of the stellar-mass black hole mergers discovered by LIGO/Virgo are still unknown. Here we show that if migration traps develop in the accretion disks of active galactic nuclei (AGNs) and promote the mergers of their captive black holes, the majority of black holes within disks will undergo hierarchical mergers-with one of the black holes being the remnant of a previous merger. 40% of AGN-assisted mergers detected by LIGO/Virgo will include a black hole with mass ≳50M_{⊙}, the mass limit from stellar core collapse. Hierarchical mergers at traps in AGNs will exhibit black hole spins (anti)aligned with the binary's orbital axis, a distinct property from other hierarchical channels. Our results suggest, although not definitively (with odds ratio of ∼1), that LIGO's heaviest merger so far, GW170729, could have originated from this channel.

2.
Nat Commun ; 8(1): 831, 2017 10 10.
Article in English | MEDLINE | ID: mdl-29018247

ABSTRACT

The recent discovery of gravitational waves from stellar-mass binary black hole mergers by the Laser Interferometer Gravitational-wave Observatory opened the door to alternative probes of stellar and galactic evolution, cosmology and fundamental physics. Probing the origin of binary black hole mergers will be difficult due to the expected lack of electromagnetic emission and limited localization accuracy. Associations with rare host galaxy types-such as active galactic nuclei-can nevertheless be identified statistically through spatial correlation. Here we establish the feasibility of statistically proving the connection between binary black hole mergers and active galactic nuclei as hosts, even if only a sub-population of mergers originate from active galactic nuclei. Our results are the demonstration that the limited localization of gravitational waves, previously written off as not useful to distinguish progenitor channels, can in fact contribute key information, broadening the range of astrophysical questions probed by binary black hole observations.Binary black hole mergers have recently been observed through the detection of gravitational wave signatures. The authors demonstrate that their association with active galactic nuclei can be made through a statistical spatial correlation.

SELECTION OF CITATIONS
SEARCH DETAIL
...