Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Med Imaging ; 24(1): 130, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38834987

ABSTRACT

In this study, we propose a novel method for quantifying tortuosity in 3D voxelized objects. As a shape characteristic, tortuosity has been widely recognized as a valuable feature in image analysis, particularly in the field of medical imaging. Our proposed method extends the two-dimensional approach of the Slope Chain Code (SCC) which creates a one-dimensional representation of curves. The utility of 3D tortuosity ( τ 3 D ) as a shape descriptor was investigated by characterizing brain structures. The results of the τ 3 D computation on the central sulcus and the main lobes revealed significant differences between Alzheimer's disease (AD) patients and control subjects, suggesting its potential as a biomarker for AD. We found a p < 0.05 for the left central sulcus and the four brain lobes.


Subject(s)
Alzheimer Disease , Brain , Imaging, Three-Dimensional , Humans , Imaging, Three-Dimensional/methods , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/pathology , Brain/diagnostic imaging , Female , Aged , Male , Algorithms , Magnetic Resonance Imaging/methods , Case-Control Studies
2.
J Ultrasound Med ; 42(11): 2567-2582, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37490582

ABSTRACT

OBJECTIVES: Here we report on the intra- and inter-operator variability of the backscatter coefficient (BSC) estimated with a new low-variance quantitative ultrasound (QUS) approach applied to breast lesions in vivo. METHODS: Radiofrequency (RF) echo signals were acquired from 29 BIRADS 4 and 5 breast lesions in 2 sequential cohorts following 2 imaging protocols: cohort 1) radial and antiradial views, and cohort 2) short- and long-axis views. Protocol 2 was implemented after retraining and discussion on how to improve reproducibility. Each patient was scanned by at least 2 of 3 radiologists; each performed 3 acquisitions with transducer and patient repositioning in between acquisitions. BSC was estimated using a low-variance QUS approach based on regularization. Intra- and inter-operator variability of the intra-lesion median BSC was evaluated with a multifactorial ANOVA test (P-values) and the intraclass correlation coefficient (ICC). RESULTS: Inter-operator variability was only significant in the first protocol (P < .007); ICCinter = .77 (95% CI .71-.82), indicating good inter-operator agreement. In the second protocol, the inter-operator variability was not significant (P > .05) and agreement was excellent (ICCinter = .92 [.89-.94]). In both protocols, the intra-operator variability was not significant. CONCLUSIONS: Our findings demonstrate the need for standardizing image acquisition protocols for backscatter-based QUS to reduce inter-operator variability and ensure its successful translation to the characterization of suspicious breast masses.

3.
Brain Topogr ; 34(4): 430-441, 2021 07.
Article in English | MEDLINE | ID: mdl-34008053

ABSTRACT

The cortical thickness has been used as a biomarker to assess different cerebral conditions and to detect alterations in the cortical mantle. In this work, we compare methods from the FreeSurfer software, the Computational Anatomy Toolbox (CAT12), a Laplacian approach and a new method here proposed, based on the Euclidean Distance Transform (EDT), and its corresponding computational phantom designed to validate the calculation algorithm. At region of interest (ROI) level, within- and inter-method comparisons were carried out with a test-retest analysis, in a subset comprising 21 healthy subjects taken from the Multi-Modal MRI Reproducibility Resource (MMRR) dataset. From the Minimal Interval Resonance Imaging in Alzheimer's Disease (MIRIAD) data, classification methods were compared in their performance to detect cortical thickness differences between 23 healthy controls (HC) and 45 subjects with Alzheimer's disease (AD). The validation of the proposed EDT-based method showed a more accurate and precise distance measurement as voxel resolution increased. For the within-method comparisons, mean test-retest measures (percentages differences/intraclass correlation/Pearson correlation) were similar for FreeSurfer (1.80%/0.90/0.95), CAT12 (1.91%/0.83/0.91), Laplacian (1.27%/0.89/0.95) and EDT (2.20%/0.88/0.94). Inter-method correlations showed moderate to strong values (R > 0.77) and, in the AD comparison study, all methods were able to detect cortical alterations between groups. Surface- and voxel-based methods have advantages and drawbacks regarding computational demands and measurement precision, while thickness definition was mainly associated to the cortical thickness absolute differences among methods. However, for each method, measurements were reliable, followed similar trends along the cortex and allowed detection of cortical atrophies between HC and patients with AD.


Subject(s)
Alzheimer Disease , Image Processing, Computer-Assisted , Alzheimer Disease/diagnostic imaging , Cerebral Cortex/diagnostic imaging , Humans , Magnetic Resonance Imaging , Reproducibility of Results
4.
Neuroimage ; 207: 116343, 2020 02 15.
Article in English | MEDLINE | ID: mdl-31734431

ABSTRACT

A voxel-based method for measuring sulcal width was developed, validated and applied to a database. This method (EDT-based LM) employs the 3D Euclidean Distance Transform (EDT) of the pial surface and a Local Maxima labeling algorithm. A computational phantom was designed to test method performance; results revealed the method's inaccuracy δ, to range between 0.1 and 0.5 voxels, for a width that varied between 1 and 7 voxels. Two morphological descriptors were computed to characterize each defined sulcus: mean sulcal width (MSW) and mean absolute deviation (MAD). The former is the average width for all available width measurements within the sulcus, and the latter is the deviation of these measurements. The EDT-based LM method was applied to the Minimal Interval Resonance Imaging in the Alzheimer's Disease (MIRIAD) database, for a set of high-resolution Magnetic Resonance (MR) images of 66 subjects: 43 patients with Alzheimer Disease (AD) and 23 control subjects. AD causes significant gray matter loss; hence, some sulci were expected to broaden. Methodological results concurred with this hypothesis. After a Wilcoxon test, MSW was grater in the case of all sulci pertaining to AD patients, (p < 0.05, FDR corrected), whereas MAD showed significant differences in 8 sulci (p < 0.05, FDR corrected). This work presents a novel voxel-based method for measuring sulcal width and extracting descriptors to characterize and compare the sulci within and across subjects.


Subject(s)
Alzheimer Disease/pathology , Alzheimer Disease/physiopathology , Cerebral Cortex/pathology , Cerebral Cortex/physiopathology , Image Processing, Computer-Assisted , Algorithms , Brain Mapping , Female , Humans , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Male
5.
Int J Med Robot ; 15(1): e1953, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30117272

ABSTRACT

BACKGROUND: Integrating simulators with robotic surgical procedures could assist in designing and testing of novel robotic control algorithms and further enhance patient-specific pre-operative planning and training for robotic surgeries. METHODS: A virtual reality simulator, developed to perform the transsphenoidal resection of pituitary gland tumours, tested the usability of robotic interfaces and control algorithms. It used position-based dynamics to allow soft-tissue deformation and resection with haptic feedback; dynamic motion scaling control was also incorporated into the simulator. RESULTS: Neurosurgeons and residents performed the surgery under constant and dynamic motion scaling conditions (CMS vs DMS). DMS increased dexterity and reduced the risk of damage to healthy brain tissue. Post-experimental questionnaires indicated that the system was well-evaluated by experts. CONCLUSION: The simulator was intuitively and realistically operated. It increased the safety and accuracy of the procedure without affecting intervention time. Future research can investigate incorporating this simulation into a real micro-surgical robotic system.


Subject(s)
Brain Neoplasms/diagnostic imaging , Brain Neoplasms/surgery , Computer Simulation , Robotic Surgical Procedures/methods , Virtual Reality , Algorithms , Brain/diagnostic imaging , Equipment Design , Humans , Motion , Movement , Neurosurgery , User-Computer Interface
SELECTION OF CITATIONS
SEARCH DETAIL
...