Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Diagnostics (Basel) ; 11(2)2021 Feb 10.
Article in English | MEDLINE | ID: mdl-33578665

ABSTRACT

Massive worldwide serological testing for SARS-CoV-2 is needed to determine the extent of virus exposure in a particular region, the ratio of symptomatic to asymptomatic infected persons, and the duration and extent of immunity after infection. To achieve this, the development and production of reliable and cost-effective SARS-CoV-2 antigens is critical. We report the bacterial production of the peptide S-RBDN318-V510, which contains the receptor-binding domain of the SARS-CoV-2 spike protein (region of 193 amino acid residues from asparagine-318 to valine-510) of the SARS-CoV-2 spike protein. We purified this peptide using a straightforward approach involving bacterial lysis, his-tag-mediated affinity chromatography, and imidazole-assisted refolding. The antigen performances of S-RBDN318-V510 and a commercial full-length spike protein were compared in ELISAs. In direct ELISAs, where the antigen was directly bound to the ELISA surface, both antigens discriminated sera from non-exposed and exposed individuals. However, the discriminating resolution was better in ELISAs that used the full-spike antigen than the S-RBDN318-V510. Attachment of the antigens to the ELISA surface using a layer of anti-histidine antibodies gave equivalent resolution for both S-RBDN318-V510 and the full-length spike protein. Results demonstrate that ELISA-functional SARS-CoV-2 antigens can be produced in bacterial cultures, and that S-RBDN318-V510 may represent a cost-effective alternative to the use of structurally more complex antigens in serological COVID-19 testing.

2.
PLoS One ; 14(5): e0215642, 2019.
Article in English | MEDLINE | ID: mdl-31071117

ABSTRACT

The development of point-of-care (POC) diagnostic systems has received well-deserved attention in recent years in the scientific literature, and many experimental systems show great promise in real settings. However, in the case of an epidemic emergency (or a natural disaster), the first line of response should be based on commercially available and validated resources. Here, we compare the performance and ease of use of the miniPCR, a recently commercially available compact and portable PCR device, and a conventional thermocycler for the diagnostics of viral nucleic acids. We used both thermocyclers to detect and amplify Ebola and Zika DNA sequences of different lengths (in the range of 91 to 300 nucleotides) at different concentrations (in the range of ~50 to 4.0 x 108 DNA copies). Our results suggest that the performance of both thermocyclers is quite similar. Moreover, the portability, ease of use, and reproducibility of the miniPCR makes it a reliable alternative for point-of-care nucleic acid detection and amplification.


Subject(s)
Hemorrhagic Fever, Ebola/diagnosis , Polymerase Chain Reaction/instrumentation , RNA, Viral/genetics , Zika Virus Infection/diagnosis , Ebolavirus/genetics , Ebolavirus/isolation & purification , Humans , Miniaturization/instrumentation , Point-of-Care Systems , Zika Virus/genetics , Zika Virus/isolation & purification
3.
Crit Rev Biotechnol ; 37(1): 53-68, 2017 Feb.
Article in English | MEDLINE | ID: mdl-26611830

ABSTRACT

The 2014 Ebola outbreak, the largest recorded, took us largely unprepared, with no available vaccine or specific treatment. In this context, the World Health Organization declared that the humanitarian use of experimental therapies against Ebola Virus (EBOV) is ethical. In particular, an experimental treatment consisting of a cocktail of three monoclonal antibodies (mAbs) produced in tobacco plants and specifically directed to the EBOV glycoprotein (GP) was tested in humans, apparently with good results. Several mAbs with high affinity to the GP have been described. This review discusses our current knowledge on this topic. Particular emphasis is devoted to those mAbs that have been assayed in animal models or humans as possible therapies against Ebola. Engineering aspects and challenges for the production of anti-Ebola mAbs are also briefly discussed; current platforms for the design and production of full-length mAbs are cumbersome and costly.


Subject(s)
Antibodies, Monoclonal/therapeutic use , Hemorrhagic Fever, Ebola/drug therapy , Animals , Antibodies, Monoclonal/economics , Costs and Cost Analysis , Ebolavirus/genetics , Glycoproteins/immunology , Hemorrhagic Fever, Ebola/economics , Hemorrhagic Fever, Ebola/epidemiology , Humans , Viral Proteins/immunology
4.
PLoS One ; 10(10): e0135859, 2015.
Article in English | MEDLINE | ID: mdl-26489048

ABSTRACT

BACKGROUND: Current Ebola virus (EBOV) detection methods are costly and impractical for epidemic scenarios. Different immune-based assays have been reported for the detection and quantification of Ebola virus (EBOV) proteins. In particular, several monoclonal antibodies (mAbs) have been described that bind the capsid glycoprotein (GP) of EBOV GP. However, the currently available platforms for the design and production of full-length mAbs are cumbersome and costly. The use of antibody fragments, rather than full-length antibodies, might represent a cost-effective alternative for the development of diagnostic and possibly even therapeutic alternatives for EBOV. METHODS/PRINCIPAL FINDINGS: We report the design and expression of three recombinant anti-GP mAb fragments in Escherichia coli cultures. These fragments contained the heavy and light variable portions of the three well-studied anti-GP full-length mAbs 13C6, 13F6, and KZ52, and are consequently named scFv-13C6, scFv-13F6, and Fab-KZ52, respectively. All three fragments exhibited specific anti-GP binding activity in ELISA experiments comparable to that of full-length anti-GP antibodies (i.e., the same order of magnitude) and they are easily and economically produced in bacterial cultures. CONCLUSION/SIGNIFICANCE: Antibody fragments might represent a useful, effective, and low cost alternative to full-length antibodies in Ebola related capture and diagnostics applications.


Subject(s)
Antibodies, Monoclonal/immunology , Antibodies, Viral/immunology , Ebolavirus/immunology , Glycoproteins/metabolism , Hemorrhagic Fever, Ebola/diagnosis , Peptide Fragments/metabolism , Viral Envelope Proteins/metabolism , Enzyme-Linked Immunosorbent Assay , Glycoproteins/immunology , Hemorrhagic Fever, Ebola/metabolism , Hemorrhagic Fever, Ebola/virology , Humans , Peptide Fragments/immunology , Recombinant Proteins/immunology , Recombinant Proteins/metabolism , Viral Envelope Proteins/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...