Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2023 Dec 21.
Article in English | MEDLINE | ID: mdl-36824866

ABSTRACT

Transcranial direct-current stimulation (tDCS) of the cerebellum is a promising non-invasive neuromodulatory technique being proposed for the treatment of neurological and neuropsychiatric disorders. However, there is a lack of knowledge about how externally applied currents affect neuronal spiking activity in cerebellar circuits in vivo. In this study, we observe that tDCS induces a heterogeneous polarity-dependent modulation of the firing rate of Purkinje cells (PC) and non-PC in the mouse cerebellar cortex. Using a combination of juxtacellular labeling and high-density Neuropixels recordings, we demonstrate that the apparently heterogeneous effects of tDCS on PC activity can be explained by taking into account the somatodendritic orientation relative to the electric field. Our findings emphasize the importance of considering neuronal orientation and morphological aspects to increase the predictive power of tDCS computational models, enhance the reliability of current stimulation protocols and optimize desired effects in basic and clinical human applications.

2.
Orthop J Sports Med ; 10(10): 23259671221130710, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36329951

ABSTRACT

Background: Glenohumeral arthropathy after surgery for traumatic shoulder instability is a condition whose etiology and long-term course are still unknown. Purpose: To evaluate the risk factors for the onset of arthropathy and to assess the relationship between the degree of arthropathy and final outcomes. Study Design: Case series; Level of evidence, 4. Methods: We included patients who underwent surgery for a shoulder instability at a single institution between 2000 and 2004. The following variables were studied for relationship with functional outcomes: sex, age, body mass index, smoking at the time of surgery, number of episodes of shoulder dislocation, and time from first dislocation to surgery. The number of anchors used and their position were also evaluated. Functional outcomes were assessed using the Constant-Murley, Western Ontario Shoulder Instability Index, and Rowe scores, and results were compared with the onset of arthropathy according to Buscayret classification. Spearman and Pearson correlations were performed for the association between glenohumeral arthritis (Buscayret grade) and the study variables, the Mann-Whitney U test and Student t test were used to compare outcome scores with the study variables, and the Kruskal-Wallis test was used to compare Buscayret grade and outcome scores. Results: A total of 26 shoulders in 25 patients were analyzed, finding a high rate (54%) of arthropathy at a minimum follow-up of 16 years. Patients with Buscayret grade 4 had the worst functional results (P = .007). However, 80% of patients with Buscayret grade ≤3 had excellent Constant-Murley scores. A significant relationship was found between degree of arthropathy and patients who were smokers before surgery (P < .01). No relationship was found between the onset of arthropathy and the other variables analyzed. Conclusion: Postinstability glenohumeral arthropathy was not correlated with functional outcomes except in those patients with advanced arthroplasty (Buscayret grade 4). A direct relationship was found between smoking before surgery and the onset of glenohumeral arthropathy.

3.
Eur J Neurosci ; 56(9): 5547-5563, 2022 11.
Article in English | MEDLINE | ID: mdl-35141975

ABSTRACT

Alzheimer's disease is histopathologically well defined by the presence of amyloid deposits and tau-related neurofibrillary tangles in crucial regions of the brain. Interest is growing in revealing and determining possible pathological markers also in the cerebellum as its involvement in cognitive functions is now well supported. Despite the central position of the Purkinje cell in the cerebellum, its electrophysiological behaviour in mouse models of Alzheimer's disease is scarce in the literature. Our first aim was here to focus on the electrophysiological behaviour of the cerebellum in awake mouse model of Alzheimer's disease (APPswe/PSEN1dE9) and the related performance on the water-maze test classically used in behavioural studies. We found prevalent signs of electrophysiological alterations in both Purkinje cells and deep cerebellar nuclei neurons which might explain the behavioural deficits reported during the water-maze test. The alterations of neurons firing were accompanied by a dual (~16 and ~228 Hz) local field potential's oscillation in the Purkinje cell layer of Alzheimer's disease mice which was concomitant to an important increase of both the simple and the complex spikes. In addition, ß-amyloid deposits were present in the molecular layer of the cerebellum. These results highlight the importance of the output firing modification of the AD cerebellum that may indirectly impact the activity of its subcortical and cortical targets.


Subject(s)
Alzheimer Disease , Purkinje Cells , Animals , Mice , Purkinje Cells/physiology , Alzheimer Disease/pathology , Plaque, Amyloid , Cerebellum/physiology , Neurons , Disease Models, Animal , Water , Electrophysiology
4.
eNeuro ; 8(5)2021.
Article in English | MEDLINE | ID: mdl-34593517

ABSTRACT

Atypical sensory processing is currently included within the diagnostic criteria of autism. The cerebellum is known to integrate sensory inputs of different modalities through its connectivity to the cerebral cortex. Interestingly, cerebellar malformations are among the most replicated features found in postmortem brain of individuals with autism. We studied sensory processing in the cerebellum in a mouse model of autism, knock-out (KO) for the Cntnap2 gene. Cntnap2 is widely expressed in Purkinje cells (PCs) and has been recently reported to regulate their morphology. Further, individuals with CNTNAP2 mutations display cerebellar malformations and CNTNAP2 antibodies are associated with a mild form of cerebellar ataxia. Previous studies in the Cntnap2 mouse model show an altered cerebellar sensory learning. However, a physiological analysis of cerebellar function has not been performed yet. We studied sensory evoked potentials in cerebellar Crus I/II region on electrical stimulation of the whisker pad in alert mice and found striking differences between wild-type and Cntnap2 KO mice. In addition, single-cell recordings identified alterations in both sensory-evoked and spontaneous firing patterns of PCs. These changes were accompanied by altered intrinsic properties and morphologic features of these neurons. Together, these results indicate that the Cntnap2 mouse model could provide novel insight into the pathophysiological mechanisms of autism core sensory deficits.


Subject(s)
Autistic Disorder , Animals , Autistic Disorder/genetics , Cerebellum , Membrane Proteins , Mice , Mice, Knockout , Nerve Tissue Proteins/genetics , Purkinje Cells , Vibrissae
6.
Prog Brain Res ; 264: 323-341, 2021.
Article in English | MEDLINE | ID: mdl-34167661

ABSTRACT

Transcranial random noise stimulation (tRNS), a non-invasive neuromodulatory technique capable of altering cortical activity, has been proposed to improve the signal-to-noise ratio at the neuronal level and the sensitivity of the neurons following an inverted U-function. The aim of this study was to examine the effects of tRNS on vGLUT1 and GAD 65-67 and its safety in terms of pathological changes. For that, juvenile mice were randomly distributed in three different groups: "tRNS 1×" receiving tRNS at the density current used in humans (0.3A/m2, 20min), "tRNS 100×" receiving tRNS at two orders of magnitude higher (30.0A/m2, 20min) and "sham" (0.3A/m2, 15s). Nine tRNS sessions during 5 weeks were administered to the prefrontal cortex of awake animals. No detectable tissue macroscopic lesions were observed after tRNS sessions. Post-stimulation immunohistochemical analysis of GAD 65-67 and vGLUT1 immunoreactivity showed reduced GAD 65-67 immunoreactivity levels in the region directly beneath the electrode for tRNS 1× group with no significant effects in the tRNS 100× nor sham group. The observed results suggest an excitatory effect associated with a decrease in GABA levels in absence of major histopathological alterations providing a novel mechanistic explanation for tRNS effects.


Subject(s)
Transcranial Direct Current Stimulation , Animals , Glucose Transporter Type 1 , Glutamate Decarboxylase , Mice , Peptide Fragments , Prefrontal Cortex
7.
Sci Rep ; 11(1): 3123, 2021 02 04.
Article in English | MEDLINE | ID: mdl-33542338

ABSTRACT

Transcranial direct-current stimulation (tDCS) is a non-invasive brain stimulation technique consisting in the application of weak electric currents on the scalp. Although previous studies have demonstrated the clinical value of tDCS for modulating sensory, motor, and cognitive functions, there are still huge gaps in the knowledge of the underlying physiological mechanisms. To define the immediate impact as well as the after effects of tDCS on sensory processing, we first performed electrophysiological recordings in primary somatosensory cortex (S1) of alert mice during and after administration of S1-tDCS, and followed up with immunohistochemical analysis of the stimulated brain regions. During the application of cathodal and anodal transcranial currents we observed polarity-specific bidirectional changes in the N1 component of the sensory-evoked potentials (SEPs) and associated gamma oscillations. On the other hand, 20 min of cathodal stimulation produced significant after-effects including a decreased SEP amplitude for up to 30 min, a power reduction in the 20-80 Hz range and a decrease in gamma event related synchronization (ERS). In contrast, no significant changes in SEP amplitude or power analysis were observed after anodal stimulation except for a significant increase in gamma ERS after tDCS cessation. The polarity-specific differences of these after effects were corroborated by immunohistochemical analysis, which revealed an unbalance of GAD 65-67 immunoreactivity between the stimulated versus non-stimulated S1 region only after cathodal tDCS. These results highlight the differences between immediate and after effects of tDCS, as well as the asymmetric after effects induced by anodal and cathodal stimulation.


Subject(s)
Evoked Potentials, Somatosensory/physiology , Somatosensory Cortex/physiology , Transcranial Direct Current Stimulation/methods , Animals , Biomarkers/metabolism , Electrodes , Gene Expression , Glutamate Decarboxylase/genetics , Glutamate Decarboxylase/metabolism , Male , Mice , Mice, Inbred C57BL , Motor Cortex/anatomy & histology , Motor Cortex/physiology , Somatosensory Cortex/anatomy & histology , Vesicular Glutamate Transport Protein 1/genetics , Vesicular Glutamate Transport Protein 1/metabolism
8.
Ann Neurol ; 88(3): 489-502, 2020 09.
Article in English | MEDLINE | ID: mdl-32542794

ABSTRACT

OBJECTIVE: Cathodal direct current stimulation (cDCS) induces long-term depression (LTD)-like reduction of cortical excitability (DCS-LTD), which has been tested in the treatment of epilepsy with modest effects. In part, this may be due to variable cortical neuron orientation relative to the electric field. We tested, in vivo and in vitro, whether DCS-LTD occurs throughout the cortical thickness, and if not, then whether drug-DCS pairing can enhance the uniformity of the cortical response and the cDCS antiepileptic effect. METHODS: cDCS-mediated changes in cortical excitability were measured in vitro in mouse motor cortex (M1) and in human postoperative neocortex, in vivo in mouse somatosensory cortex (S1), and in a mouse kainic acid (KA)-seizure model. Contributions of N-methyl-D-aspartate-type glutamate receptors (NMDARs) to cDCS-mediated plasticity were tested with application of NMDAR blockers (memantine/D-AP5). RESULTS: cDCS reliably induced DCS-LTD in superficial cortical layers, and a long-term potentiation (LTP)-like enhancement (DCS-LTP) was recorded in deep cortical layers. Immunostaining confirmed layer-specific increase of phospho-S6 ribosomal protein in mouse M1. Similar nonuniform cDCS aftereffects on cortical excitability were also found in human neocortex in vitro and in S1 of alert mice in vivo. Application of memantine/D-AP5 either produced a more uniform DCS-LTD throughout the cortical thickness or at least abolished DCS-LTP. Moreover, a combination of memantine and cDCS suppressed KA-induced seizures. INTERPRETATION: cDCS aftereffects are not uniform throughout cortical layers, which may explain the incomplete cDCS clinical efficacy. NMDAR antagonists may augment cDCS efficacy in epilepsy and other disorders where regional depression of cortical excitability is desirable. ANN NEUROL 2020;88:489-502.


Subject(s)
Cerebral Cortex/drug effects , Cerebral Cortex/physiopathology , Excitatory Amino Acid Antagonists/pharmacology , Long-Term Synaptic Depression/physiology , Transcranial Direct Current Stimulation/methods , Animals , Epilepsy/physiopathology , Humans , Long-Term Synaptic Depression/drug effects , Male , Mice , Mice, Inbred C57BL
9.
Curr Opin Biomed Eng ; 8: 7-13, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30272042

ABSTRACT

Transcranial electrical stimulation (tES) refers to a group of non-invasive brain stimulation techniques to induce changes in the excitability of cortical neurons in humans. In recent years, studies in animal models have been shown to be essential for disentangling the neuromodulatory effects of tES, defining safety limits, and exploring potential therapeutic applications in neurological and neuropsychiatric disorders. Testing in animal models is valuable for the development of new unconventional protocols intended to improve tES administration and optimize the desired effects by increasing its focality and enabling deep-brain stimulation. Successful and controlled application of tES in humans relies on the knowledge acquired from studies meticulously performed in animal models.

10.
Curr Behav Neurosci Rep ; 5(2): 125-135, 2018 Jun.
Article in English | MEDLINE | ID: mdl-30013890

ABSTRACT

PURPOSE OF REVIEW: Transcranial electrical stimulation (tES) is a non-invasive stimulation technique used for modulating brain function in humans. To help tES reach its full therapeutic potential, it is necessary to address a number of critical gaps in our knowledge. Here, we review studies that have taken advantage of animal models to provide invaluable insight about the basic science behind tES. RECENT FINDINGS: Animal studies are playing a key role in elucidating the mechanisms implicated in tES, defining safety limits, validating computational models, inspiring new stimulation protocols, enhancing brain function and exploring new therapeutic applications. SUMMARY: Animal models provide a wealth of information that can facilitate the successful utilization of tES for clinical interventions in human subjects. To this end, tES experiments in animals should be carefully designed to maximize opportunities for applying discoveries to the treatment of human disease.

11.
Sci Rep ; 8(1): 4220, 2018 03 09.
Article in English | MEDLINE | ID: mdl-29523816

ABSTRACT

Purkinje cells (PC) control deep cerebellar nuclei (DCN), which in turn inhibit inferior olive nucleus, closing a positive feedback loop via climbing fibers. PC highly express potassium BK channels but their contribution to the olivo-cerebellar loop is not clear. Using multiple-unit recordings in alert mice we found in that selective deletion of BK channels in PC induces a decrease in their simple spike firing with a beta-range bursting pattern and fast intraburst frequency (~200 Hz). To determine the impact of this abnormal rhythm on the olivo-cerebellar loop we analyzed simultaneous rhythmicity in different cerebellar structures. We found that this abnormal PC rhythmicity is transmitted to DCN neurons with no effect on their mean firing frequency. Long term depression at the parallel-PC synapses was altered and the intra-burst complex spike spikelets frequency was increased without modification of the mean complex spike frequency in BK-PC-/- mice. We argue that the ataxia present in these conditional knockout mice could be explained by rhythmic disruptions transmitted from mutant PC to DCN but not by rate code modification only. This suggests a neuronal mechanism for ataxia with possible implications for human disease.


Subject(s)
Cerebellar Nuclei/physiology , Gene Deletion , Large-Conductance Calcium-Activated Potassium Channels/deficiency , Large-Conductance Calcium-Activated Potassium Channels/genetics , Long-Term Synaptic Depression/genetics , Periodicity , Purkinje Cells/metabolism , Animals , Mice , Mice, Inbred C57BL , Neurons/cytology , Purkinje Cells/cytology
12.
J Neurosci ; 36(26): 6988-7001, 2016 06 29.
Article in English | MEDLINE | ID: mdl-27358456

ABSTRACT

UNLABELLED: Classical blink conditioning is a well known model for studying neural generation of acquired motor responses. The acquisition of this type of associative learning has been related to many cortical, subcortical, and cerebellar structures. However, until now, no one has studied the motor cortex (MC) and its possible role in classical eyeblink conditioning. We recorded in rabbits the activity of MC neurons during blink conditioning using a delay paradigm. Neurons were identified by their antidromic activation from facial nucleus (FN) or red nucleus (RN). For conditioning, we used a tone as a conditioned stimulus (CS) followed by an air puff as an unconditioned stimulus (US) that coterminated with it. Conditioned responses (CRs) were determined from the electromyographic activity of the orbicularis oculi muscle and/or from eyelid position recorded with the search coil technique. Type A neurons increased their discharge rates across conditioning sessions and reached peak firing during the CS-US interval, while type B cells presented a second peak during US presentation. Both of them project to the FN. Type C cells increased their firing across the CS-US interval, reaching peak values at the time of US presentation, and were activated from the RN. These three types of neurons fired well in advance of the beginning of CRs and changed with them. Reversible inactivation of the MC during conditioning evoked a decrease in learning curves and in the amplitude of CRs, while train stimulation of the MC simulated the profile and kinematics of conditioned blinks. In conclusion, MC neurons are involved in the acquisition and expression of CRs. SIGNIFICANCE STATEMENT: Classical blink conditioning is a popular experimental model for studying neural mechanisms underlying the acquisition of motor skills. The acquisition of this type of associative learning has been related to many cortical, subcortical, and cerebellar structures. However, until now, no one has studied the motor cortex (MC) and its possible role in classical eyeblink conditioning. Here, we report that the firing activities of MC neurons, recorded in behaving rabbits, are related to and preceded the initiation of conditioned blinks. MC neurons were identified as projecting to the red or facial nuclei and encoded the kinematics of conditioned eyelid responses. The timed stimulation of recording sites simulated the profile of conditioned blinks. MC neurons play a role in the acquisition and expression of these acquired motor responses.


Subject(s)
Action Potentials/physiology , Conditioning, Eyelid/physiology , Motor Cortex/physiology , Motor Neurons/physiology , Wakefulness/physiology , Animals , Biomechanical Phenomena , Biotin/analogs & derivatives , Biotin/metabolism , Brain Mapping , Choline O-Acetyltransferase/metabolism , Dextrans/metabolism , Electromyography , Male , Motor Cortex/cytology , Neural Pathways/physiology , Photic Stimulation , Rabbits , Statistics, Nonparametric
13.
Sci Rep ; 6: 19753, 2016 Jan 21.
Article in English | MEDLINE | ID: mdl-26790614

ABSTRACT

The use of brain-derived signals for controlling external devices has long attracted the attention from neuroscientists and engineers during last decades. Although much effort has been dedicated to establishing effective brain-to-computer communication, computer-to-brain communication feedback for "closing the loop" is now becoming a major research theme. While intracortical microstimulation of the sensory cortex has already been successfully used for this purpose, its future application in humans partly relies on the use of non-invasive brain stimulation technologies. In the present study, we explore the potential use of transcranial alternating-current stimulation (tACS) for synthetic tactile perception in alert behaving animals. More specifically, we determined the effects of tACS on sensory local field potentials (LFPs) and motor output and tested its capability for inducing tactile perception using classical eyeblink conditioning in the behaving animal. We demonstrated that tACS of the primary somatosensory cortex vibrissa area could indeed substitute natural stimuli during training in the associative learning paradigm.


Subject(s)
Behavior, Animal , Touch Perception , Transcranial Direct Current Stimulation , Animals , Brain-Computer Interfaces , Conditioning, Classical , Electric Stimulation , Evoked Potentials, Somatosensory , Motor Cortex/physiology , Rabbits , Somatosensory Cortex/physiology
14.
Front Psychol ; 7: 1981, 2016.
Article in English | MEDLINE | ID: mdl-28066300

ABSTRACT

Motor learning consists of the ability to improve motor actions through practice playing a major role in the acquisition of skills required for high-performance sports or motor function recovery after brain lesions. During the last decades, it has been reported that transcranial direct-current stimulation (tDCS), consisting in applying weak direct current through the scalp, is able of inducing polarity-specific changes in the excitability of cortical neurons. This low-cost, painless and well-tolerated portable technique has found a wide-spread use in the motor learning domain where it has been successfully applied to enhance motor learning in healthy individuals and for motor recovery after brain lesion as well as in pathological states associated to motor deficits. The main objective of this mini-review is to offer an integrative view about the potential use of tDCS for human motor learning modulation. Furthermore, we introduce the basic mechanisms underlying immediate and long-term effects associated to tDCS along with important considerations about its limitations and progression in recent years.

15.
Mol Brain ; 8: 1, 2015 Jan 09.
Article in English | MEDLINE | ID: mdl-25571783

ABSTRACT

BACKGROUND: Regulation of synaptic connectivity, including long-term depression (LTD), allows proper tuning of cellular signalling processes within brain circuitry. In the cerebellum, a key centre for motor coordination, a positive feedback loop that includes mitogen-activated protein kinases (MAPKs) is required for proper temporal control of LTD at cerebellar Purkinje cell synapses. Here we report that the tyrosine-specific MAPK-phosphatase PTPRR plays a role in coordinating the activity of this regulatory loop. RESULTS: LTD in the cerebellum of Ptprr (-/-) mice is strongly impeded, in vitro and in vivo. Comparison of basal phospho-MAPK levels between wild-type and PTPRR deficient cerebellar slices revealed increased levels in mutants. This high basal phospho-MAPK level attenuated further increases in phospho-MAPK during chemical induction of LTD, essentially disrupting the positive feedback loop and preventing α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) phosphorylation and endocytosis. CONCLUSIONS: Our findings indicate an important role for PTPRR in maintaining low basal MAPK activity in Purkinje cells. This creates an optimal 'window' to boost MAPK activity following signals that induce LTD, which can then propagate through feed-forward signals to cause AMPAR internalization and LTD.


Subject(s)
Cerebellum/metabolism , Long-Term Synaptic Depression , Purkinje Cells/metabolism , Receptor-Like Protein Tyrosine Phosphatases, Class 7/metabolism , Animals , Electric Stimulation , Extracellular Signal-Regulated MAP Kinases/metabolism , Feedback, Physiological , Female , Male , Mice, Inbred C57BL , Mice, Knockout , Mice, Neurologic Mutants , Mitogen-Activated Protein Kinase Kinases/metabolism , Models, Biological , Phosphorylation , Receptor-Like Protein Tyrosine Phosphatases, Class 7/deficiency , Receptors, AMPA/metabolism , Synapses/metabolism , Vibrissae , src-Family Kinases/metabolism
16.
Front Syst Neurosci ; 8: 221, 2014.
Article in English | MEDLINE | ID: mdl-25477791

ABSTRACT

Angelman syndrome (AS) is a genetic neurodevelopmental disorder in which cerebellar functioning impairment has been documented despite the absence of gross structural abnormalities. Characteristically, a spontaneous 160 Hz oscillation emerges in the Purkinje cells network of the Ube3a (m-/p+) Angelman mouse model. This abnormal oscillation is induced by enhanced Purkinje cell rhythmicity and hypersynchrony along the parallel fiber beam. We present a pathophysiological hypothesis for the neurophysiology underlying major aspects of the clinical phenotype of AS, including cognitive, language and motor deficits, involving long-range connection between the cerebellar and the cortical networks. This hypothesis states that the alteration of the cerebellar rhythmic activity impinges cerebellar long-term depression (LTD) plasticity, which in turn alters the LTD plasticity in the cerebral cortex. This hypothesis was based on preliminary experiments using electrical stimulation of the whiskers pad performed in alert mice showing that after a 8 Hz LTD-inducing protocol, the cerebellar LTD accompanied by a delayed response in the wild type (WT) mice is missing in Ube3a (m-/p+) mice and that the LTD induced in the barrel cortex following the same peripheral stimulation in wild mice is reversed into a LTP in the Ube3a (m-/p+) mice. The control exerted by the cerebellum on the excitation vs. inhibition balance in the cerebral cortex and possible role played by the timing plasticity of the Purkinje cell LTD on the spike-timing dependent plasticity (STDP) of the pyramidal neurons are discussed in the context of the present hypothesis.

17.
Neural Plast ; 2013: 853654, 2013.
Article in English | MEDLINE | ID: mdl-24319600

ABSTRACT

The role of cerebellar plasticity has been increasingly recognized in learning. The privileged relationship between the cerebellum and the inferior olive offers an ideal circuit for attempting to integrate the numerous evidences of neuronal plasticity into a translational perspective. The high learning capacity of the Purkinje cells specifically controlled by the climbing fiber represents a major element within the feed-forward and feedback loops of the cerebellar cortex. Reciprocally connected with the basal ganglia and multimodal cerebral domains, this cerebellar network may realize fundamental functions in a wide range of behaviors. This review will outline the current understanding of three main experimental paradigms largely used for revealing cerebellar functions in behavioral learning: (1) the vestibuloocular reflex and smooth pursuit control, (2) the eyeblink conditioning, and (3) the sensory envelope plasticity. For each of these experimental conditions, we have critically revisited the chain of causalities linking together neural circuits, neural signals, and plasticity mechanisms, giving preference to behaving or alert animal physiology. Namely, recent experimental approaches mixing neural units and local field potentials recordings have demonstrated a spike timing dependent plasticity by which the cerebellum remains at a strategic crossroad for deciphering fundamental and translational mechanisms from cellular to network levels.


Subject(s)
Cerebellum/physiology , Learning/physiology , Neuronal Plasticity/physiology , Translational Research, Biomedical , Animals , Cerebellar Cortex/cytology , Cerebellar Cortex/physiology , Conditioning, Eyelid/physiology , Haplorhini , Humans , Purkinje Cells/physiology , Pursuit, Smooth/physiology , Rabbits , Reflex, Vestibulo-Ocular/physiology , Signal Transduction/physiology
18.
Front Hum Neurosci ; 7: 602, 2013 Sep 24.
Article in English | MEDLINE | ID: mdl-24068995

ABSTRACT

Transcranial direct current stimulation (tDCS) is a promising tool for cognitive enhancement and neurorehabilitation in clinical disorders in both cognitive and clinical domains (e.g., chronic pain, tinnitus). Here we suggest the potential role of tDCS in modulating cortical excitation/inhibition (E/I) balance and thereby inducing improvements. We suggest that part of the mechanism of action of tDCS can be explained by non-invasive modulations of the E/I balance.

19.
Brain Stimul ; 6(1): 25-39, 2013 Jan.
Article in English | MEDLINE | ID: mdl-22420944

ABSTRACT

Although it is well-admitted that transcranial Direct Current Stimulation (tDCS) allows for interacting with brain endogenous rhythms, the exact mechanisms by which externally-applied fields modulate the activity of neurons remain elusive. In this study a novel computational model (a neural mass model including subpopulations of pyramidal cells and inhibitory interneurons mediating synaptic currents with either slow or fast kinetics) of the cerebral cortex was elaborated to investigate the local effects of tDCS on neuronal populations based on an in-vivo experimental study. Model parameters were adjusted to reproduce evoked potentials (EPs) recorded from the somatosensory cortex of the rabbit in response to air-puffs applied on the whiskers. EPs were simulated under control condition (no tDCS) as well as under anodal and cathodal tDCS fields. Results first revealed that a feed-forward inhibition mechanism must be included in the model for accurate simulation of actual EPs (peaks and latencies). Interestingly, results revealed that externally-applied fields are also likely to affect interneurons. Indeed, when interneurons get polarized then the characteristics of simulated EPs become closer to those of real EPs. In particular, under anodal tDCS condition, more realistic EPs could be obtained when pyramidal cells were depolarized and, simultaneously, slow (resp. fast) interneurons became de- (resp. hyper-) polarized. Geometrical characteristics of interneurons might provide some explanations for this effect.


Subject(s)
Computer Simulation , Evoked Potentials/physiology , Neurons/physiology , Somatosensory Cortex/physiology , Transcranial Magnetic Stimulation , Animals , Male , Rabbits
20.
PLoS One ; 7(4): e36184, 2012.
Article in English | MEDLINE | ID: mdl-22563448

ABSTRACT

In vitro studies have supported the occurrence of cerebellar long-term depression (LTD), an interaction between the parallel fibers and Purkinje cells (PCs) that requires the combined activation of the parallel and climbing fibers. To demonstrate the existence of LTD in alert animals, we investigated the plasticity of local field potentials (LFPs) evoked by electrical stimulation of the whisker pad. The recorded LFP showed two major negative waves corresponding to trigeminal (broken into the N2 and N3 components) and cortical responses. PC unitary extracellular recording showed that N2 and N3 occurred concurrently with PC evoked simple spikes, followed by an evoked complex spike. Polarity inversion of the N3 component at the PC level and N3 amplitude reduction after electrical stimulation of the parallel fiber volley applied on the surface of the cerebellum 2 ms earlier strongly suggest that N3 was related to the parallel fiber-PC synapse activity. LFP measurements elicited by single whisker pad stimulus were performed before and after trains of electrical stimuli given at a frequency of 8 Hz for 10 min. We demonstrated that during this later situation, the stimulation of the PC by parallel and climbing fibers was reinforced. After 8-Hz stimulation, we observed long-term modifications (lasting at least 30 min) characterized by a specific decrease of the N3 amplitude accompanied by an increase of the N2 and N3 latency peaks. These plastic modifications indicated the existence of cerebellar LTD in alert animals involving both timing and synaptic modulations. These results corroborate the idea that LTD may underlie basic physiological functions related to calcium-dependent synaptic plasticity in the cerebellum.


Subject(s)
Cerebellar Cortex/physiology , Neuronal Plasticity/physiology , Animals , Electric Stimulation , Excitatory Postsynaptic Potentials/physiology , Male , Mice , Purkinje Cells/physiology , Vibrissae/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...