Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 19(5): e0302913, 2024.
Article in English | MEDLINE | ID: mdl-38728358

ABSTRACT

In the fight against antimicrobial resistance, host defense peptides (HDPs) are increasingly referred to as promising molecules for the design of new antimicrobial agents. In terms of their future clinical use, particularly small, synthetic HDPs offer several advantages, based on which their application as feed additives has aroused great interest in the poultry sector. However, given their complex mechanism of action and the limited data about the cellular effects in production animals, their investigation is of great importance in these species. The present study aimed to examine the immunomodulatory activity of the synthetic HDP Pap12-6 (PAP) solely and in inflammatory environments evoked by lipoteichoic acid (LTA) and polyinosinic-polycytidylic acid (Poly I:C), in a primary chicken hepatocyte-non-parenchymal cell co-culture. Based on the investigation of the extracellular lactate dehydrogenase (LDH) activity, PAP seemed to exert no cytotoxicity on hepatic cells, suggesting its safe application. Moreover, PAP was able to influence the immune response, reflected by the decreased production of interleukin (IL)-6, IL-8, and "regulated on activation, normal T cell expressed and secreted"(RANTES), as well as the reduced IL-6/IL-10 ratio in Poly I:C-induced inflammation. PAP also diminished the levels of extracellular H2O2 and nuclear factor erythroid 2-related factor 2 (Nrf2) when applied together with Poly I:C and in both inflammatory conditions, respectively. Consequently, PAP appeared to display potent immunomodulatory activity, preferring to act towards the cellular anti-inflammatory and antioxidant processes. These findings confirm that PAP might be a promising alternative for designing novel antimicrobial immunomodulatory agents for chickens, thereby contributing to the reduction of the use of conventional antibiotics.


Subject(s)
Chickens , Hepatocytes , Lipopolysaccharides , Poly I-C , Animals , Hepatocytes/drug effects , Hepatocytes/immunology , Hepatocytes/metabolism , Poly I-C/pharmacology , Lipopolysaccharides/pharmacology , Immunologic Factors/pharmacology , Teichoic Acids/pharmacology , Cells, Cultured , Immunomodulating Agents/pharmacology , Immunomodulating Agents/chemistry , Coculture Techniques , Antimicrobial Peptides/pharmacology , Antimicrobial Peptides/chemistry , Cytokines/metabolism , Antimicrobial Cationic Peptides/pharmacology
2.
Front Vet Sci ; 11: 1337677, 2024.
Article in English | MEDLINE | ID: mdl-38496311

ABSTRACT

Introduction: Host defense peptides (HDPs) are increasingly referred to as promising candidates for the reduction of the use of conventional antibiotics, thereby combating antibiotic resistance. As HDPs have been described to exert various immunomodulatory effects, cecropin A (CecA) appears to be a potent agent to influence the host inflammatory response. Methods: In the present study, a chicken primary hepatocyte-non-parenchymal cell co-culture was used to investigate the putative immunomodulatory effects of CecA alone and in inflammatory conditions evoked by polyinosinic-polycytidylic acid (Poly I:C). To examine the viability of the cells, the extracellular lactate dehydrogenase (LDH) activity was determined by colorimetric assay. Inflammatory markers interleukin (IL)-8 and transforming growth factor-ß1 (TGF-ß1) were investigated using the ELISA method, whereas concentrations of IL-6, IL-10, and interferon-γ (IFN-γ) were assayed by Luminex xMAP technology. Extracellular H2O2 and malondialdehyde levels were measured by fluorometric and colorimetric methods, respectively. Results: Results of the lower concentrations suggested the safe application of CecA; however, it might contribute to hepatic cell membrane damage at its higher concentrations. We also found that the peptide alleviated the inflammatory response, reflected by the decreased production of the pro-inflammatory IL-6, IL-8, and IFN-γ. In addition, CecA diminished the levels of anti-inflammatory IL-10 and TGF-ß1. The oxidative markers measured remained unchanged in most cases of CecA exposure. Discussion: CecA displayed a multifaceted immunomodulatory but not purely anti-inflammatory activity on the hepatic cells, and might be suggested to maintain the hepatic inflammatory homeostasis in Poly I:C-triggered immune response. To conclude, our study suggests that CecA might be a promising molecule for the development of new immunomodulatory antibiotic-substitutive agents in poultry medicine; however, there is still a lot to clarify regarding its cellular effects.

3.
Sci Rep ; 14(1): 1195, 2024 01 12.
Article in English | MEDLINE | ID: mdl-38216675

ABSTRACT

Despite being one of the most common contaminants of poultry feed, the molecular effects of T-2 toxin on the liver of the exposed animals are still not fully elucidated. To gain more accurate understanding, the effects of T-2 toxin were investigated in the present study in chicken-derived three-dimensional (3D) primary hepatic cell cultures. 3D spheroids were treated with three concentrations (100, 500, 1000 nM) of T-2 toxin for 24 h. Cellular metabolic activity declined in all treated groups as reflected by the Cell Counting Kit-8 assay, while extracellular lactate dehydrogenase activity was increased after 500 nM T-2 toxin exposure. The levels of oxidative stress markers malondialdehyde and protein carbonyl were reduced by the toxin, suggesting effective antioxidant compensatory mechanisms of the liver. Concerning the pro-inflammatory cytokines, IL-6 concentration was decreased, while IL-8 concentration was increased by 100 nM T-2 toxin exposure, indicating the multifaceted immunomodulatory action of the toxin. Further, the metabolic profile of hepatic spheroids was also modulated, confirming the altered lipid and amino acid metabolism of toxin-exposed liver cells. Based on these results, T-2 toxin affected cell viability, hepatocellular metabolism and inflammatory response, likely carried out its toxic effects by affecting the oxidative homeostasis of the cells.


Subject(s)
Chickens , T-2 Toxin , Animals , Chickens/metabolism , T-2 Toxin/toxicity , T-2 Toxin/metabolism , Liver/metabolism , Oxidative Stress , Cytokines/metabolism , Cell Culture Techniques
4.
Sci Rep ; 13(1): 14530, 2023 09 04.
Article in English | MEDLINE | ID: mdl-37666888

ABSTRACT

IDR-1002, a synthetic host defense peptide (HDP), appears to be a potential candidate for the treatment of bacterial infections and the consequent inflammatory response due to its potent immunomodulatory activity. This is of relevance to the emerging issue of antimicrobial resistance in the farming sector. In this study, the effects of IDR-1002 were investigated on a chicken hepatocyte‒non-parenchymal cell co-culture, and the results revealed that IDR-1002 had complex effects on the regulation of the hepatic innate immunity. IDR-1002 increased the levels of both RANTES (Regulated on Activation, Normal T cell Expressed and Secreted) and Macrophage colony stimulating factor (M-CSF), suggesting the peptide plays a role in the modulation of macrophage differentiation, also reflected by the reduced concentrations of interleukin (IL)-6 and IL-10. The pro-inflammatory cytokine release triggered by the bacterial cell wall component lipoteichoic acid (LTA) was ameliorated by the concomitantly applied IDR-1002 based on the levels of IL-6, chicken chemotactic and angiogenic factor (CXCLi2) and interferon (IFN)-γ. Moreover, the production of nuclear factor erythroid 2-related factor 2 (Nrf2), an essential transcription factor in the antioxidant defense pathway, was increased after IDR-1002 exposure, while protein carbonyl (PC) levels were also elevated. These findings suggest that IDR-1002 affects the interplay of the cellular immune response and redox homeostasis, thus the peptide represents a promising tool in the treatment of bacterially induced inflammation in chickens.


Subject(s)
Chickens , Hepatocytes , Animals , Antimicrobial Cationic Peptides/pharmacology , Cell Culture Techniques , Immunity, Innate
SELECTION OF CITATIONS
SEARCH DETAIL
...