Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Parasit Vectors ; 17(1): 399, 2024 Sep 19.
Article in English | MEDLINE | ID: mdl-39300572

ABSTRACT

BACKGROUND: The recent rise in the transmission of mosquito-borne diseases such as dengue virus (DENV), Zika (ZIKV), chikungunya (CHIKV), Oropouche (OROV), and West Nile (WNV) is a major concern for public health managers worldwide. Emerging technologies for automated remote mosquito classification can be supplemented to improve surveillance systems and provide valuable information regarding mosquito vector catches in real time. METHODS: We coupled an optical sensor to the entrance of a standard mosquito suction trap (BG-Mosquitaire) to record 9151 insect flights in two Brazilian cities: Rio de Janeiro and Brasilia. The traps and sensors remained in the field for approximately 1 year. A total of 1383 mosquito flights were recorded from the target species: Aedes aegypti and Culex quinquefasciatus. Mosquito classification was based on previous models developed and trained using European populations of Aedes albopictus and Culex pipiens. RESULTS: The VECTRACK sensor was able to discriminate the target mosquitoes (Aedes and Culex genera) from non-target insects with an accuracy of 99.8%. Considering only mosquito vectors, the classification between Aedes and Culex achieved an accuracy of 93.7%. The sex classification worked better for Cx. quinquefasciatus (accuracy: 95%; specificity: 95.3%) than for Ae. aegypti (accuracy: 92.1%; specificity: 88.4%). CONCLUSIONS: The data reported herein show high accuracy, sensitivity, specificity and precision of an automated optical sensor in classifying target mosquito species, genus and sex. Similar results were obtained in two different Brazilian cities, suggesting high reliability of our findings. Surprisingly, the model developed for European populations of Ae. albopictus worked well for Brazilian Ae. aegypti populations, and the model developed and trained for Cx. pipiens was able to classify Brazilian Cx. quinquefasciatus populations. Our findings suggest this optical sensor can be integrated into mosquito surveillance methods and generate accurate automatic real-time monitoring of medically relevant mosquito species.


Subject(s)
Aedes , Culex , Mosquito Vectors , Animals , Aedes/classification , Aedes/physiology , Culex/classification , Mosquito Vectors/classification , Brazil , Female , Male , Mosquito Control/methods , Mosquito Control/instrumentation
2.
Acta Trop ; 176: 140-143, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28743449

ABSTRACT

Ae. aegypti is the main vector of dengue (DENV), Zika (ZIKV), and chikungunya (CHIKV) viruses. The transmission dynamics of these arboviruses, especially the arboviral circulation in the mosquito population during low and high transmission seasons in endemic areas are still poorly understood. We conducted an entomological survey to determine dengue infection rates in Ae. aegypti and Aedes albopictus. These collections were performed in 2012-2013 during a Rio de Janeiro epidemic, just before the introduction and spread of ZIKV and CHIKV in the city. MosquiTrap© and BG-Sentinel traps were installed in three fixed and seven itinerant neighborhoods each month over ten months. Mosquitoes were in supernatants pools tested and individually confirmed for DENV infection using RT-PCR. A total of 3053 Aedes mosquitos were captured and Ae. aegypti was much more frequent (92.9%) than Ae. albopictus (6.8%). Ae. aegypti females accounted for 71.8% of captured mosquitoes by MosquitTrap© and were the only species found naturally infected with DENV (infection rate=0.81%). Only one Ae. aegypti male, collected by BG-sentinel, was also tested positive for DENV. The peak of DENV-positive mosquitoes coincided the season of the highest incidence of human cases. The most common serotypes detected in mosquitoes were DENV-3 (24%) and DENV-1 (24%), followed by DENV-4 (20%), DENV-2 (8%) and DENV-1 plus DENV4 (4%), while 95% of laboratory-confirmed human infections in the period were due to DENV-4. These contrasting results suggest silent maintenance of DENV serotypes during the epidemics, reinforcing the importance of entomological and viral surveillance in endemic areas.


Subject(s)
Aedes/virology , Dengue/veterinary , Insect Vectors/virology , Animals , Brazil/epidemiology , Cities , Dengue Virus , Female , Humans , Male , Seasons , Serogroup
SELECTION OF CITATIONS
SEARCH DETAIL