Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
2.
Sci Rep ; 14(1): 11157, 2024 06 04.
Article in English | MEDLINE | ID: mdl-38834598

ABSTRACT

Snakebite envenomation is a major public health issue which causes severe morbidity and mortality, affecting millions of people annually. Of a diverse range of clinical manifestations, local and systemic haemorrhage are of particular relevance, as this may result in ischemia, organ failure and even cardiovascular shock. Thus far, in vitro studies have failed to recapitulate the haemorrhagic effects observed in vivo. Here, we present an organ-on-a-chip approach to investigate the effects of four different snake venoms on a perfused microfluidic blood vessel model. We assess the effect of the venoms of four snake species on epithelial barrier function, cell viability, and contraction/delamination. Our findings reveal two different mechanisms by which the microvasculature is being affected, either by disruption of the endothelial cell membrane or by delamination of the endothelial cell monolayer from its matrix. The use of our blood vessel model may shed light on the key mechanisms by which tissue-damaging venoms exert their effects on the capillary vessels, which could be helpful for the development of effective treatments against snakebites.


Subject(s)
Lab-On-A-Chip Devices , Snake Venoms , Animals , Humans , Endothelial Cells/drug effects , Hemorrhage , Cell Survival/drug effects , Snake Bites/drug therapy , Human Umbilical Vein Endothelial Cells/drug effects , Microphysiological Systems
3.
Toxicon X ; 22: 100197, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38633504

ABSTRACT

Snakebite envenoming is a global health issue that affects millions of people worldwide, and that causes morbidity rates surpassing 450,000 individuals annually. Patients suffering from snakebite morbidities may experience permanent disabilities such as pain, blindness and amputations. The (local) tissue damage that causes these life-long morbidities is the result of cell- and tissue-damaging toxins present in the venoms. These compounds belong to a variety of toxin classes and may affect cells in various ways, for example, by affecting the cell membrane. In this study, we have developed a high-throughput in vitro assay that can be used to study membrane disruption caused by snake venoms using phospholipid vesicles from egg yolk as a substrate. Resuspended chicken egg yolk was used to form these vesicles, which were fluorescently stained to allow monitoring of the degradation of egg yolk vesicles on a plate reader. The assay proved to be suitable for studying phospholipid vesicle degradation of crude venoms and was also tested for its applicability for neutralisation studies of varespladib, which is a PLA2 inhibitor. We additionally made an effort to identify the responsible toxins using liquid chromatography, followed by post-column bioassaying and protein identification using high-throughput venomics. We successfully identified various toxins in the venoms of C. rhodostoma and N. mossambica, which are likely to be involved in the observed vesicle-degrading effect. This indicates that the assay can be used for screening the membrane degrading activity of both crude and fractionated venoms as well as for neutralisation studies.

4.
Toxicon X ; 21: 100185, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38425752

ABSTRACT

Snakebite envenoming is a priority Neglected Tropical Disease that causes an estimated 81,000-135,000 fatalities each year. The development of a new generation of safer, affordable, and accessible antivenom therapies is urgently needed. With this goal in mind, rigorous characterisation of the specific toxins in snake venom is key to generating novel therapies for snakebite. Monoclonal antibodies directed against venom toxins are emerging as potentially strong candidates in the development of new snakebite diagnostics and treatment. Venoms comprise many different toxins of which several are responsible for their pathological effects. Due to the large variability of venoms within and between species, formulations of combinations of human antibodies are proposed as the next generation antivenoms. Here a high-throughput screening method employing antibody-based ligand fishing of venom toxins in 384 filter-well plate format has been developed to determine the antibody target/s The approach uses Protein G beads for antibody capture followed by exposure to a full venom or purified toxins to bind their respective ligand toxin(s). This is followed by a washing/centrifugation step to remove non-binding toxins and an in-well tryptic digest. Finally, peptides from each well are analysed by nanoLC-MS/MS and subsequent Mascot database searching to identify the bound toxin/s for each antibody under investigation. The approach was successfully validated to rapidly screen antibodies sourced from hybridomas, derived from venom-immunised mice expressing either regular human antibodies or heavy-chain-only human antibodies (HCAbs).

5.
Commun Biol ; 7(1): 358, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38519650

ABSTRACT

Snakebite envenoming is an important public health issue responsible for mortality and severe morbidity. Where mortality is mainly caused by venom toxins that induce cardiovascular disturbances, neurotoxicity, and acute kidney injury, morbidity is caused by toxins that directly or indirectly destroy cells and degrade the extracellular matrix. These are referred to as 'tissue-damaging toxins' and have previously been classified in various ways, most of which are based on the tissues being affected (e.g., cardiotoxins, myotoxins). This categorisation, however, is primarily phenomenological and not mechanistic. In this review, we propose an alternative way of classifying cytotoxins based on their mechanistic effects rather than using a description that is organ- or tissue-based. The mechanisms of toxin-induced tissue damage and their clinical implications are discussed. This review contributes to our understanding of fundamental biological processes associated with snakebite envenoming, which may pave the way for a knowledge-based search for novel therapeutic options.


Subject(s)
Snake Bites , Humans , Snake Bites/drug therapy , Snake Venoms/toxicity , Snake Venoms/therapeutic use , Extracellular Matrix , Public Health
6.
Toxicon ; 240: 107637, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38331109

ABSTRACT

Here we describe the acute myocardial effects of an elapid (red spitting cobra, Naja pallida) and a viper (western diamondback rattlesnake, Crotalus atrox) venom using an ex vivo heart model. Our results reveal two different pathophysiological trajectories that influence heart function and morphology. While cobra venom causes a drop in contractile force, rattlesnake venom causes enhanced contractility and frequency that coincides with differences in myocellular morphology. This highlights the medical complexity of snake venom-induced cardiotoxicity.


Subject(s)
Crotalid Venoms , Naja , Venomous Snakes , Animals , Crotalus , Cardiotoxicity , Elapid Venoms/toxicity , Elapidae , Crotalid Venoms/toxicity
7.
Toxins (Basel) ; 15(9)2023 09 05.
Article in English | MEDLINE | ID: mdl-37755978

ABSTRACT

Modern analytical size exclusion chromatography (SEC) is a suitable technique to separate venom toxin families according to their size characteristics. In this study, a method was developed to separate intact venom toxins from Bungarus multicinctus and Daboia russelii venoms via analytical SEC using volatile, non-salt-containing eluents for post-column mass spectrometry, coagulation bioassaying and high-throughput venomics. Two venoms were used to demonstrate the method developed. While the venom of Bungaurs multicinctus is known to exert anticoagulant effects on plasma, in this study, we showed the existence of both procoagulant toxins and anticoagulant toxins. For Daboia russelii venom, the method revealed characteristic procoagulant effects, with a 90 kDa mass toxin detected and matched with the Factor X-activating procoagulant heterotrimeric glycoprotein named RVV-X. The strong procoagulant effects for this toxin show that it was most likely eluted from size exclusion chromatography non-denatured. In conclusion, the separation of snake venom by size gave the opportunity to separate some specific toxin families from each other non-denatured, test these for functional bioactivities, detect the eluting mass on-line via mass spectrometry and identify the eluted toxins using high-throughput venomics.


Subject(s)
Anticoagulants , Biological Assay , Chromatography, Gel , Mass Spectrometry , Viper Venoms
8.
PLoS Negl Trop Dis ; 17(8): e0011564, 2023 08.
Article in English | MEDLINE | ID: mdl-37590328

ABSTRACT

Snakebite envenoming is a globally important public health issue that has devastating consequences on human health and well-being, with annual mortality rates between 81,000 and 138,000. Snake venoms may cause different pathological effects by altering normal physiological processes such as nervous transfer and blood coagulation. In addition, snake venoms can cause severe (local) tissue damage that may result in life-long morbidities, with current estimates pointing towards an additional 450,000 individuals that suffer from permanent disabilities such as amputations, contractions and blindness. Despite such high morbidity rates, research to date has been mainly focusing on neurotoxic and haemotoxic effects of snake venoms and considerably less on venom-induced tissue damage. The molecular mechanisms underlaying this pathology include membrane disruption and extracellular matrix degradation. This research describes methods used to study the (molecular) mechanisms underlaying venom-induced cell- and tissue damage. A selection of cellular bioassays and fluorescent microscopy were used to study cell-damaging activities of snake venoms in multi-well plates, using both crude and fractionated venoms. A panel of 10 representative medically relevant snake species was used, which cover a large part of the geographical regions most heavily affected by snakebite. The study comprises both morphological data as well as quantitative data on cell metabolism and viability, which were measured over time. Based on this data, a distinction could be made in the ways by which viper and elapid venoms exert their effects on cells. We further made an effort to characterise the bioactive compounds causing these effects, using a combination of liquid chromatography methods followed by bioassaying and protein identification using proteomics. The outcomes of this study might prove valuable for better understanding venom-induced cell- and tissue-damaging pathologies and could be used in the process of developing and improving snakebite treatments.


Subject(s)
Snake Bites , Humans , Snake Venoms/toxicity , Elapid Venoms , Amputation, Surgical , Biological Assay
9.
Biology (Basel) ; 12(6)2023 May 24.
Article in English | MEDLINE | ID: mdl-37372050

ABSTRACT

Snakebite envenoming is an important public health issue with devastating consequences and annual mortality rates that range between 81,000 and 138,000. Snake venoms may cause a range of pathophysiological effects affecting the nervous system and the cardiovascular system. Moreover, snake venom may have tissue-damaging activities that result in lifelong morbidities such as amputations, muscle degeneration, and organ malfunctioning. The tissue-damaging components in snake venoms comprise multiple toxin classes with various molecular targets including cellular membranes and the extracellular matrix (ECM). In this study, we present multiple assay formats that enable investigation of snake venom-induced ECM degradation using a variety of (dye-quenched) fluorescently labeled ECM components. Using a combinatorial approach, we were able to characterise different proteolytic profiles for different medically relevant snake venoms, followed by identification of the responsible components within the snake venoms. This workflow could provide valuable insights into the key mechanisms by which proteolytic venom components exert their effects and could therefore prove useful for the development of effective snakebite treatments against this severe pathology.

10.
Toxins (Basel) ; 15(4)2023 04 18.
Article in English | MEDLINE | ID: mdl-37104232

ABSTRACT

The cytotoxicity caused by snake venoms is a serious medical problem that greatly contributes to the morbidity observed in snakebite patients. The cytotoxic components found in snake venoms belong to a variety of toxin classes and may cause cytotoxic effects by targeting a range of molecular structures, including cellular membranes, the extracellular matrix (ECM) and the cytoskeleton. Here, we present a high-throughput assay (384-well plate) that monitors ECM degradation by snake venom toxins via the application of fluorescent versions of model ECM substrates, specifically gelatin and collagen type I. Both crude venoms and fractionated toxins of a selection of medically relevant viperid and elapid species, separated via size-exclusion chromatography, were studied using the self-quenching, fluorescently labelled ECM-polymer substrates. The viperid venoms showed significantly higher proteolytic degradation when compared to elapid venoms, although the venoms with higher snake venom metalloproteinase content did not necessarily exhibit stronger substrate degradation than those with a lower one. Gelatin was generally more readily cleaved than collagen type I. In the viperid venoms, which were subjected to fractionation by SEC, two (B. jararaca and C. rhodostoma, respectively) or three (E. ocellatus) active proteases were identified. Therefore, the assay allows the study of proteolytic activity towards the ECM in vitro for crude and fractionated venoms.


Subject(s)
Snake Bites , Toxins, Biological , Humans , Collagen Type I , Gelatin , Snake Venoms/chemistry , Elapid Venoms/chemistry , Metalloproteases , Extracellular Matrix
11.
PLoS Negl Trop Dis ; 15(12): e0009880, 2021 12.
Article in English | MEDLINE | ID: mdl-34855751

ABSTRACT

The Middle East and Northern Africa, collectively known as the MENA region, are inhabited by a plethora of venomous animals that cause up to 420,000 bites and stings each year. To understand the resultant health burden and the key variables affecting it, this review describes the epidemiology of snake, scorpion, and spider envenomings primarily based on heterogenous hospital data in the MENA region and the pathologies associated with their venoms. In addition, we discuss the venom composition and the key medically relevant toxins of these venomous animals, and, finally, the antivenoms that are currently in use to counteract them. Unlike Asia and sub-Saharan Africa, scorpion stings are significantly more common (approximately 350,000 cases/year) than snakebites (approximately 70,000 cases/year) and present the most significant contributor to the overall health burden of envenomings, with spider bites being negligible. However, this review also indicates that there is a substantial lack of high-quality envenoming data available for the MENA region, rendering many of these estimates speculative. Our understanding of the venoms and the toxins they contain is also incomplete, but already presents clear trends. For instance, the majority of snake venoms contain snake venom metalloproteinases, while sodium channel-binding toxins and potassium channel-binding toxins are the scorpion toxins that cause most health-related challenges. There also currently exist a plethora of antivenoms, yet only few are clinically validated, and their high cost and limited availability present a substantial health challenge. Yet, some of the insights presented in this review might help direct future research and policy efforts toward the appropriate prioritization of efforts and aid the development of future therapeutic solutions, such as next-generation antivenoms.


Subject(s)
Scorpion Stings/physiopathology , Scorpion Venoms/analysis , Snake Bites/physiopathology , Snake Venoms/analysis , Africa, Northern , Animals , Antivenins/therapeutic use , Humans , Middle East , Scorpion Stings/drug therapy , Scorpions , Snake Bites/drug therapy , Snake Bites/therapy , Snakes
12.
PLoS One ; 16(11): e0258712, 2021.
Article in English | MEDLINE | ID: mdl-34793470

ABSTRACT

Scorpion venoms are mixtures of proteins, peptides and small molecular compounds with high specificity for ion channels and are therefore considered to be promising candidates in the venoms-to-drugs pipeline. Transcriptomes are important tools for studying the composition and expression of scorpion venom. Unfortunately, studying the venom gland transcriptome traditionally requires sacrificing the animal and therefore is always a single snapshot in time. This paper describes a new way of generating a scorpion venom gland transcriptome without sacrificing the animal, thereby allowing the study of the transcriptome at various time points within a single individual. By comparing these venom-derived transcriptomes to the traditional whole-telson transcriptomes we show that the relative expression levels of the major toxin classes are similar. We further performed a multi-day extraction using our proposed method to show the possibility of doing a multiple time point transcriptome analysis. This allows for the study of patterns of toxin gene activation over time a single individual, and allows assessment of the effects of diet, season and other factors that are known or likely to influence intraindividual venom composition. We discuss the gland characteristics that may allow this method to be successful in scorpions and provide a review of other venomous taxa to which this method may potentially be successfully applied.


Subject(s)
Peptides/genetics , Scorpion Venoms/genetics , Scorpions/genetics , Transcriptome/genetics , Amino Acid Sequence/genetics , Animals , Gene Expression Profiling , Peptides/classification , Salivary Glands/metabolism
13.
Sci Total Environ ; 799: 149469, 2021 Dec 10.
Article in English | MEDLINE | ID: mdl-34375866

ABSTRACT

Grade control structures (GCSs) are one of the most often used hydraulic structures in a river regulation in mountain catchments. The purpose of their use is to reduce the river bed gradient and prevent downcutting. The aim of this study is to evaluate the influence of GCS on changes in river bed morphology. The study was conducted in a downstream stretch (5.66 km long) of the Carpathian river - the Mszanka, regulated with 25 GCSs. Research has shown that erosion is here a predominant process despite the use of GCSs. The river bed has been cut into bedrock along approximately 40% of a studied stretch. A total of 56 scour holes were identified, which vary substantially in terms of their depth, length, and mechanism of formation. The erosion depth depends mainly on the length of reaches between GCSs and on the water surface gradient. A surprising research discovery was scour holes found upstream of the crests of the GCSs - 16 such scour holes were found. The formation of these scour holes is explained through the drawdown profile characterized by the increasing of the velocity that favored the bed erosion. The studied river is characterized by deficit of sediment. The insufficient sediment supply and imbalance between the river's load and sediment transport are two of the greatest problems affecting the most Carpathian rivers. The novelty of this research is the analysis of such a long and complex reach of mountain river engineered with GCSs in terms of variances in erosion processes. Also a new knowledge presented here is an information about scour holes located upstream of GCSs and explanation of the mechanism of their formation. Results from this research could serve geomorphologists, engineers and ecologists as well as help river managers in decision-making processes when river regulation is planned.


Subject(s)
Geologic Sediments , Rivers , Engineering
14.
Article in English | MEDLINE | ID: mdl-33839052

ABSTRACT

Snakebite is classified as a priority Neglected Tropical Disease by the World Health Organization. Understanding the pathology of individual snake venom toxins is of great importance when developing more effective snakebite therapies. Snake venoms may induce a range of pathologies, including haemolytic activity. Although snake venom-induced erythrocyte lysis is not the primary cause of mortality, haemolytic activity can greatly debilitate victims and contributes to systemic haemotoxicity. Current assays designed for studying haemolytic activity are not suitable for rapid screening of large numbers of toxic compounds. Consequently, in this study, a high-throughput haemolytic assay was developed that allows profiling of erythrocyte lysis, and was validated using venom from a number of medically important snake species (Calloselasma rhodostoma, Daboia russelii, Naja mossambica, Naja nigricollis and Naja pallida). The assay was developed in a format enabling direct integration into nanofractionation analytics, which involves liquid chromatographic separation of venom followed by high-resolution fractionation and subsequent bioassaying (and optional proteomics analysis), and parallel mass spectrometric detection. Analysis of the five snake venoms via this nanofractionation approach involving haemolytic assaying provided venom-cytotoxicity profiles and enabled identification of the toxins responsible for haemolytic activity. Our results show that the elapid snake venoms (Naja spp.) contained both direct and indirect lytic toxins, while the viperid venoms (C. rhodostoma and D. russelii) only showed indirect lytic activities, which required the addition of phospholipids to exert cytotoxicity on erythrocytes. The haemolytic venom toxins identified were mainly phospholipase A2s and cytotoxic three finger toxins. Finally, the applicability of this new analytical method was demonstrated using a conventional snakebite antivenom treatment and a small-molecule drug candidate to assess neutralisation of venom cytotoxins.


Subject(s)
Erythrocytes/drug effects , Hemolysis/drug effects , High-Throughput Screening Assays/methods , Nanotechnology/methods , Snake Venoms , Animals , Chemical Fractionation , Chromatography, Liquid , Humans , Mass Spectrometry , Phospholipases A2 , Snake Venoms/chemistry , Snake Venoms/toxicity , Snakes
15.
Biomedicines ; 8(9)2020 Aug 20.
Article in English | MEDLINE | ID: mdl-32825484

ABSTRACT

Animal-derived antivenoms are the only specific therapies currently available for the treatment of snake envenoming, but these products have a number of limitations associated with their efficacy, safety and affordability for use in tropical snakebite victims. Small molecule drugs and drug candidates are regarded as promising alternatives for filling the critical therapeutic gap between snake envenoming and effective treatment. In this study, by using an advanced analytical technique that combines chromatography, mass spectrometry and bioassaying, we investigated the effect of several small molecule inhibitors that target phospholipase A2 (varespladib) and snake venom metalloproteinase (marimastat, dimercaprol and DMPS) toxin families on inhibiting the activities of coagulopathic toxins found in Viperinae snake venoms. The venoms of Echis carinatus, Echis ocellatus, Daboia russelii and Bitis arietans, which are known for their potent haemotoxicities, were fractionated in high resolution onto 384-well plates using liquid chromatography followed by coagulopathic bioassaying of the obtained fractions. Bioassay activities were correlated to parallel recorded mass spectrometric and proteomics data to assign the venom toxins responsible for coagulopathic activity and assess which of these toxins could be neutralized by the inhibitors under investigation. Our results showed that the phospholipase A2-inhibitor varespladib neutralized the vast majority of anticoagulation activities found across all of the tested snake venoms. Of the snake venom metalloproteinase inhibitors, marimastat demonstrated impressive neutralization of the procoagulation activities detected in all of the tested venoms, whereas dimercaprol and DMPS could only partially neutralize these activities at the doses tested. Our results provide additional support for the concept that combinations of small molecules, particularly the combination of varespladib with marimastat, serve as a drug-repurposing opportunity to develop new broad-spectrum inhibitor-based therapies for snakebite envenoming.

16.
Toxicol In Vitro ; 60: 330-335, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31170449

ABSTRACT

Envenomations by venomous snakes have major public health implications on a global scale. Despite its medical importance, snakebite has long been a neglected tropical disease by both governments and medical science. Many aspects of the resulting pathophysiology have been largely under-investigated. Most research on snake venom has focused on the neurological effects, with coagulotoxicity being relatively neglected, especially for venoms in the Elapidae snake family. In order to fill the knowledge gap regarding the coagulotoxic effects of elapid snake venoms, we performed functional activity tests to determine the fibrinogenolytic activity of 29 African and Asian elapid venoms across eight genera. The results of this study revealed that destructive (non-clotting) fibrinogenolytic activity is widespread across the African and Asian elapids. This trait evolved independently twice: once in the Hemachatus/Naja last common ancestor and again in Ophiophagus. Further, within Naja this trait was amplified on several independent occasions and possibly explains some of the clinical symptoms produced by these species. Species within the Hemachatus/Naja with fibrinogenolytic activity only cleaved the Aα-chain of fibrinogen, whereas Ophiophagus venoms degraded both the Aα- and the Bß-chain of fibrinogen. All other lineages tested in this study lacked significant fibrinogenolytic effects. Our systematic research across Afro-Asian elapid snake venoms helps shed light on the various molecular mechanisms that are involved in coagulotoxicity within Elapidae.


Subject(s)
Elapid Venoms/toxicity , Fibrinogen/metabolism , Fibrinolytic Agents/toxicity , Animals , Behavior, Animal , Elapidae
17.
Toxicol Lett ; 302: 1-6, 2019 Mar 01.
Article in English | MEDLINE | ID: mdl-30502385

ABSTRACT

Due to their potent coagulotoxicity, Australian elapid venoms are unique relative to non-Australian members of the Elapidae snake family. The majority of Australian elapids possess potent procoagulant venom, while only a few species have been identified as possessing anticoagulant venoms. The majority of research to-date has concentrated on large species with range distributions overlapping major city centres, such as brown snakes (Pseudonaja spp.) and taipans (Oxyuranus spp.). We investigated the venom from the poorly studied genus Denisonia and documented anticoagulant activities that were differentially potent on amphibian, avian, and human plasmas. Both species were potently anticoagulant upon amphibian plasma, consistent with these snakes preying upon frogs as their primary food source. While D. devisi was only relatively weakly active on avian and human plasma, D. maculata was potently anticoagulant to amphibian, avian, and human plasma. The mechanism of anticoagulant action was determined to be the inhibition of prothrombin activation by Factor Xa by blocking the formation of the prothrombinase complex. Fractionation of D. maculata venom followed by MS sequencing revealed that the toxins responsible were Group I phospholipase A2. As no antivenom is produced for this species or its near relatives, we examined the ability of Seqirus Australian snake polyvalent antivenom to neutralise the anticoagulant effects, with this antivenom shown to be effective. These results contribute to the body of knowledge regarding adaptive evolution of venom, revealing a unique taxon-specific anticoagulant effect for D. devisi venom. These results also reveal the potential effects and mechanisms behind envenomation by the potently acting D. maculata venom on human plasma, while the discovery of the efficacy of an available antivenom provides information crucial to the design of snakebite management strategies.


Subject(s)
Antivenins/pharmacology , Blood Coagulation/drug effects , Elapid Venoms/metabolism , Elapidae/metabolism , Factor V/antagonists & inhibitors , Factor Xa Inhibitors/pharmacology , Snake Bites/drug therapy , Animals , Antivenins/metabolism , Bufo marinus/blood , Chickens/blood , Dose-Response Relationship, Drug , Factor V/metabolism , Factor Xa/metabolism , Factor Xa Inhibitors/metabolism , Humans , Snake Bites/blood , Species Specificity
18.
Toxins (Basel) ; 10(12)2018 12 04.
Article in English | MEDLINE | ID: mdl-30518149

ABSTRACT

Snakebite is a global tropical disease that has long had huge implications for human health and well-being. Despite its long-standing medical importance, it has been the most neglected of tropical diseases. Reflective of this is that many aspects of the pathology have been underinvestigated. Snakebite by species in the Elapidae family is typically characterised by neurotoxic effects that result in flaccid paralysis. Thus, while clinically significant disturbances to the coagulation cascade have been reported, the bulk of the research to date has focused upon neurotoxins. In order to fill the knowledge gap regarding the coagulotoxic effects of elapid snake venoms, we screened 30 African and Asian venoms across eight genera using in vitro anticoagulant assays to determine the relative inhibition of the coagulation function of thrombin and the inhibition of the formation of the prothrombinase complex through competitive binding to a nonenzymatic site on Factor Xa (FXa), thereby preventing FXa from binding to Factor Va (FVa). It was revealed that African spitting cobras were the only species that were potent inhibitors of either clotting factor, but with Factor Xa inhibited at 12 times the levels of thrombin inhibition. This is consistent with at least one death on record due to hemorrhage following African spitting cobra envenomation. To determine the efficacy of antivenom in neutralising the anticoagulant venom effects, for the African spitting cobras we repeated the same 8-point dilution series with the addition of antivenom and observed the shift in the area under the curve, which revealed that the antivenom performed extremely poorly against the coagulotoxic venom effects of all species. However, additional tests with the phospholipase A2 inhibitor LY315920 (trade name: varespladib) demonstrated a powerful neutralisation action against the coagulotoxic actions of the African spitting cobra venoms. Our research has important implications for the clinical treatment of cobra snakebites and also sheds light on the molecular mechanisms involved in coagulotoxicity within Naja. As the most coagulotoxic species are also those that produce characteristic extreme local tissue damage, future research should investigate potential synergistic actions between anticoagulant toxins and cytotoxins.


Subject(s)
Acetates/pharmacology , Anticoagulants/pharmacology , Elapid Venoms/pharmacology , Indoles/pharmacology , Phospholipase A2 Inhibitors/pharmacology , Animals , Antivenins/pharmacology , Blood Coagulation/drug effects , Elapidae , Factor Va/metabolism , Factor Xa/metabolism , Fibrinogen/metabolism , Humans , Keto Acids , Snake Bites/drug therapy
19.
Opt Express ; 20(4): 3866-76, 2012 Feb 13.
Article in English | MEDLINE | ID: mdl-22418143

ABSTRACT

A new temperature performance record of 199.5 K for terahertz quantum cascade lasers is achieved by optimizing the lasing transition oscillator strength of the resonant phonon based three-well design. The optimum oscillator strength of 0.58 was found to be larger than that of the previous record (0.41) by Kumar et al. [Appl. Phys. Lett. 94, 131105 (2009)]. The choice of tunneling barrier thicknesses was determined with a simplified density matrix model, which converged towards higher tunneling coupling strengths than previously explored and nearly perfect alignment of the states across the injection and extraction barriers at the design electric field. At 8 K, the device showed a threshold current density of 1 kA/cm2, with a peak output power of ∼ 38 mW, and lasing frequency blue-shifting from 2.6 THz to 2.85 THz with increasing bias. The wavelength blue-shifted to 3.22 THz closer to the maximum operating temperature of 199.5 K, which corresponds to ∼ 1.28hω/κB. The voltage dependence of laser frequency is related to the Stark effect of two intersubband transitions and is compared with the simulated gain spectra obtained by a Monte Carlo approach.

20.
J Mol Cell Cardiol ; 25(4): 459-68, 1993 Apr.
Article in English | MEDLINE | ID: mdl-8340935

ABSTRACT

Recent studies suggest that low molecular weight (LMW) GTP-binding proteins are involved in the vesicular transport of proteins along the secretory pathway. In order to determine whether LMW GTP-binding proteins are potentially involved in the regulated secretion of atrial natriuretic factor (ANF) from the atrial myocyte, rat atrial secretory granules were purified and the LMW GTP-binding proteins associated with these granules were detected in [alpha-32P]GTP-blotting experiments. Three LMW GTP-binding proteins, displaying molecular weights of 23,000, 25,000 and 29,000, were usually observed in atrial secretory granule preparations. The 29 kDa GTP-binding protein (G29), however, was typically the predominantly labelled band. The binding of [alpha-32P]GTP to G29 was guanine nucleotide specific and magnesium-dependent. Trypsin treatment of intact secretory granules markedly reduced the binding of [alpha-32P]GTP to G29. G29 is tightly associated with the granule membrane, as evidenced by its resistance to solubilization by high ionic strength buffers but its sensitivity to solubilization with sodium cholate. When secretory granule preparations of rat anterior pituitary glands were examined for the presence of LMW GTP-binding proteins, a different pattern of LMW GTP-binding proteins was observed which did not include a predominantly labelled 29 kDa protein. The results of this study indicate that: (1) LMW GTP-binding proteins are present on atrial secretory granules and may therefore be involved in the regulated secretion of ANF and (2) tissue-specific differences exist between the LMW GTP-binding proteins associated with secretory granules.


Subject(s)
Atrial Natriuretic Factor/metabolism , Cytoplasmic Granules/chemistry , GTP-Binding Proteins/analysis , Heart Atria/chemistry , Animals , Biological Transport , Cytoplasmic Granules/metabolism , Densitometry , Heart Atria/metabolism , Molecular Weight , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...