Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Biotechnol J ; 18(11): e2300053, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37424196

ABSTRACT

Cultivating Chinese hamster ovary (CHO) cells in microtiter plates (MTPs) with time-resolved monitoring of the oxygen transfer rate (OTR) is highly desirable to provide process insights at increased throughput. However, monitoring of the OTR in MTPs has not been demonstrated for CHO cells, yet. Hence, a CHO cultivation process was transferred from shake flasks to MTPs to enable monitoring of the OTR in each individual well of a 48-well MTP. For this, the cultivation of an industrially relevant, antibody-producing cell line was transferred from shake flask to MTP based on the volumetric oxygen mass transfer coefficient (kL a). Culture behavior was well comparable (deviation of the final IgG titer less than 10%). Monitoring of the OTR in 48-well MTPs was then used to derive the cytotoxicity of dimethyl sulfoxide (DMSO) based on a dose-response curve in a single experiment using a second CHO cell line. Logistic fitting of the dose-response curve determined after 100 h was used to determine the DMSO concentration that resulted in a cytotoxicity of 50% (IC50). A DMSO concentration of 2.70% ± 0.25% was determined, which agrees with the IC50 previously determined in shake flasks (2.39% ± 0.1%). Non-invasive, parallelized, and time-resolved monitoring of the OTR of CHO cells in MTPs was demonstrated and offers excellent potential to speed up process development and assess cytotoxicity.


Subject(s)
Cell Culture Techniques , Oxygen , Cricetinae , Animals , CHO Cells , Oxygen/metabolism , Cricetulus , Cell Culture Techniques/methods , Dimethyl Sulfoxide , Bioreactors
2.
Sensors (Basel) ; 22(15)2022 Jul 26.
Article in English | MEDLINE | ID: mdl-35898085

ABSTRACT

Chemometric models for on-line process monitoring have become well established in pharmaceutical bioprocesses. The main drawback is the required calibration effort and the inflexibility regarding system or process changes. So, a recalibration is necessary whenever the process or the setup changes even slightly. With a large and diverse Raman dataset, however, it was possible to generate generic partial least squares regression models to reliably predict the concentrations of important metabolic compounds, such as glucose-, lactate-, and glutamine-indifferent CHO cell cultivations. The data for calibration were collected from various cell cultures from different sites in different companies using different Raman spectrophotometers. In testing, the developed "generic" models were capable of predicting the concentrations of said compounds from a dilution series in FMX-8 mod medium, as well as from an independent CHO cell culture. These spectra were taken with a completely different setup and with different Raman spectrometers, demonstrating the model flexibility. The prediction errors for the tests were mostly in an acceptable range (<10% relative error). This demonstrates that, under the right circumstances and by choosing the calibration data carefully, it is possible to create generic and reliable chemometric models that are transferrable from one process to another without recalibration.


Subject(s)
Chemometrics , Spectrum Analysis, Raman , Animals , CHO Cells , Calibration , Cricetinae , Cricetulus , Least-Squares Analysis
3.
Biotechnol J ; 17(8): e2100325, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35320618

ABSTRACT

The increased use of biopharmaceuticals calls for improved means of bioprocess monitoring. In this work, capillary electrophoresis (CE) and microchip electrophoresis (MCE) methods were developed and applied for the analysis of amino acids (AAs) in cell culture supernatant. In samples from different days of a Chinese hamster ovary cell cultivation process, all 19 proteinogenic AAs containing primary amine groups could be detected using CE, and 17 out of 19 AAs using MCE. The relative concentration changes in different samples agreed well with those measured by high-performance liquid chromatography (HPLC). Compared to the more commonly employed HPLC analysis, the CE and MCE methods resulted in faster analysis, while significantly lowering both the sample and reagent consumption, and the cost per analysis.


Subject(s)
Biological Products , Electrophoresis, Microchip , Amino Acids/chemistry , Animals , CHO Cells , Cricetinae , Cricetulus , Electrophoresis, Microchip/methods
5.
ACS Sens ; 6(3): 842-851, 2021 03 26.
Article in English | MEDLINE | ID: mdl-33724791

ABSTRACT

The biopharmaceutical market has been rapidly growing in recent years, creating a highly competitive arena where R&D is critical to strike a balance between clinical safety and profitability. Toward process optimization, the recent development and adoption of new process analytical technologies (PAT) highlight the dynamic complexity of mammalian/human cell culture processes, as well as the importance of fine-tuning and modeling key metabolites and proteins. In this context, simple, rapid, and cost-effective devices allowing routine at-line monitoring of specific proteins during process development and production are currently lacking. Here, we report the development of a versatile microfluidic protein analysis cartridge allowing the multiplexed bead-based immunodetection of specific proteins directly from complex mixtures with minimal hands-on time. Colorimetric quantification of Chinese hamster ovary (CHO) host cell proteins as key impurities, monoclonal antibodies as target biopharmaceuticals, and lactate dehydrogenase as a marker of cell viability was achieved with limits of detection in the 1-10 ng/mL range and analysis times as short as 30 min. The device was further demonstrated for the monitoring of a Rituximab-producing CHO cell bioreactor over the course of 8 days, providing comparable recoveries to standard enzyme-linked immunosorbent assay (ELISA) kits. The high sensitivity combined with robustness to matrix interference highlights the potential of the device to perform at-line measurements spanning from the bioreactor to the downstream processing.


Subject(s)
Biological Products , Microfluidics , Animals , CHO Cells , Cell Culture Techniques , Cricetinae , Cricetulus , Humans
6.
Metab Eng Commun ; 8: e00083, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30809468

ABSTRACT

Mathematical modelling can provide precious tools for bioprocess simulation, prediction, control and optimization of mammalian cell-based cultures. In this paper we present a novel method to generate kinetic models of such cultures, rendering complex metabolic networks in a poly-pathway kinetic model. The model is based on subsets of elementary flux modes (EFMs) to generate macro-reactions. Thanks to our column generation-based optimization algorithm, the experimental data are used to identify the EFMs, which are relevant to the data. Here the systematic enumeration of all the EFMs is eliminated and a network including a large number of reactions can be considered. In particular, the poly-pathway model can simulate multiple metabolic behaviors in response to changes in the culture conditions. We apply the method to a network of 126 metabolic reactions describing cultures of antibody-producing Chinese hamster ovary cells, and generate a poly-pathway model that simulates multiple experimental conditions obtained in response to variations in amino acid availability. A good fit between simulated and experimental data is obtained, rendering the variations in the growth, product, and metabolite uptake/secretion rates. The intracellular reaction fluxes simulated by the model are explored, linking variations in metabolic behavior to adaptations of the intracellular metabolism.

7.
Front Cell Neurosci ; 12: 56, 2018.
Article in English | MEDLINE | ID: mdl-29559893

ABSTRACT

The electrical activity of the brain arises from single neurons communicating with each other. However, how single neurons interact during early development to give rise to neural network activity remains poorly understood. We studied the emergence of synchronous neural activity in human pluripotent stem cell (hPSC)-derived neural networks simultaneously on a single-neuron level and network level. The contribution of gamma-aminobutyric acid (GABA) and gap junctions to the development of synchronous activity in hPSC-derived neural networks was studied with GABA agonist and antagonist and by blocking gap junctional communication, respectively. We characterized the dynamics of the network-wide synchrony in hPSC-derived neural networks with high spatial resolution (calcium imaging) and temporal resolution microelectrode array (MEA). We found that the emergence of synchrony correlates with a decrease in very strong GABA excitation. However, the synchronous network was found to consist of a heterogeneous mixture of synchronously active cells with variable responses to GABA, GABA agonists and gap junction blockers. Furthermore, we show how single-cell distributions give rise to the network effect of GABA, GABA agonists and gap junction blockers. Finally, based on our observations, we suggest that the earliest form of synchronous neuronal activity depends on gap junctions and a decrease in GABA induced depolarization but not on GABAA mediated signaling.

8.
Stem Cell Res ; 27: 151-161, 2018 03.
Article in English | MEDLINE | ID: mdl-29414606

ABSTRACT

Long-term neural differentiation of human pluripotent stem cells (hPSCs) is associated with enhanced neuronal maturation, which is a necessity for creation of representative in vitro models. It also induces neurogenic-to-gliogenic fate switch, increasing proportion of endogenous astrocytes formed from the common neural progenitors. However, the significance of prolonged differentiation on the neural cell type composition and functional development of hPSC-derived neuronal cells has not been well characterized. Here, we studied two hPSC lines, both of which initially showed good neuronal differentiation capacity. However, the propensity for endogenous astrogenesis and maturation state after extended differentiation varied. Live cell calcium imaging revealed that prolonged differentiation facilitated maturation of GABAergic signaling. According to extracellular recordings with microelectrode array (MEA), neuronal activity was limited to fewer areas of the culture, which expressed more frequent burst activity. Efficient maturation after prolonged differentiation also promoted organization of spontaneous activity by burst compaction. These results suggest that although prolonged neural differentiation can be challenging, it has beneficial effect on functional maturation, which can also improve transition to different neural in vitro models and applications.


Subject(s)
Neurons/cytology , Neurons/metabolism , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/metabolism , Astrocytes/cytology , Astrocytes/metabolism , Cell Culture Techniques , Cell Differentiation/physiology , Cells, Cultured , GABAergic Neurons/metabolism , Humans , Immunohistochemistry
9.
Front Neurosci ; 11: 606, 2017.
Article in English | MEDLINE | ID: mdl-29163011

ABSTRACT

Measurement of the activity of human pluripotent stem cell (hPSC)-derived neuronal networks with microelectrode arrays (MEAs) plays an important role in functional in vitro brain modelling and in neurotoxicological screening. The previously reported hPSC-derived neuronal networks do not, however, exhibit repeatable, stable functional network characteristics similar to rodent cortical cultures, making the interpretation of results difficult. In earlier studies, microtunnels have been used both to control and guide cell growth and amplify the axonal signals of rodent neurons. The aim of the current study was to develop tunnel devices that would facilitate signalling and/or signal detection in entire hPSC-derived neuronal networks containing not only axons, but also somata and dendrites. Therefore, MEA-compatible polydimethylsiloxane (PDMS) tunnel devices with 8 different dimensions were created. The hPSC-derived neurons were cultured in the tunnel devices on MEAs, and the spontaneous electrical activity of the networks was measured for 5 weeks. Although the tunnel devices improved the signal-to-noise ratio only by 1.3-fold at best, they significantly increased the percentage of electrodes detecting neuronal activity (52-100%) compared with the controls (27%). Significantly higher spike and burst counts were also obtained using the tunnel devices. Neuronal networks inside the tunnels were amenable to pharmacological manipulation. The results suggest that tunnel devices encompassing the entire neuronal network can increase the measured spontaneous activity in hPSC-derived neuronal networks on MEAs. Therefore, they can increase the efficiency of functional studies of hPSC-derived networks on MEAs.

10.
Stem Cell Res ; 24: 118-127, 2017 10.
Article in English | MEDLINE | ID: mdl-28926760

ABSTRACT

Laminins are one of the major protein groups in the extracellular matrix (ECM) and specific laminin isoforms are crucial for neuronal functions in the central nervous system in vivo. In the present study, we compared recombinant human laminin isoforms (LN211, LN332, LN411, LN511, and LN521) and laminin isoform fragment (LN511-E8) in in vitro cultures of human pluripotent stem cell (hPSC)-derived neurons. We showed that laminin substrates containing the α5-chain are important for neuronal attachment, viability and network formation, as detected by phase contrast imaging, viability staining, and immunocytochemistry. Gene expression analysis showed that the molecular mechanisms involved in the preference of hPSC-derived neurons for specific laminin isoforms could be related to ECM remodeling and cell adhesion. Importantly, the microelectrode array analysis revealed the widest distribution of electrophysiologically active neurons on laminin α5 substrates, indicating most efficient development of neuronal network functionality. This study shows that specific laminin α5 substrates provide a controlled in vitro culture environment for hPSC-derived neurons. These substrates can be utilized not only to enhance the production of functional hPSC-derived neurons for in vitro applications like disease modeling, toxicological studies, and drug discovery, but also for the production of clinical grade hPSC-derived cells for regenerative medicine applications.


Subject(s)
Laminin/metabolism , Neurons/cytology , Neurons/metabolism , Pluripotent Stem Cells/cytology , Animals , Cell Count , Cell Line , Cell Shape , Cell Survival , Electrophysiological Phenomena , Extracellular Matrix/metabolism , Gene Expression Profiling , Gene Expression Regulation , Humans , Mice , Protein Isoforms/metabolism
11.
J Neurosci Methods ; 259: 143-155, 2016 Feb 01.
Article in English | MEDLINE | ID: mdl-26675487

ABSTRACT

BACKGROUND: Neuronal networks are routinely assessed based on extracellular electrophysiological microelectrode array (MEA) measurements by spike sorting, and spike and burst statistics. We propose to jointly analyze sorted spikes and detected bursts, and hypothesize that the obtained spike type compositions of the bursts can provide new information on the functional networks. NEW METHOD: Spikes are detected and sorted to obtain spike types and bursts are detected. In the proposed joint analysis, each burst spike is associated with a spike type, and the spike type compositions of the bursts are assessed. RESULTS: The proposed method was tested with simulations and MEA measurements of in vitro human stem cell derived neuronal networks under different pharmacological treatments. The results show that the treatments altered the spike type compositions of the bursts. For example, 6-cyano-7-nitroquinoxaline-2,3-dione almost completely abolished two types of spikes which had composed the bursts in the baseline, while bursts of spikes of two other types appeared more frequently. This phenomenon was not observable by spike sorting or burst analysis alone, but was revealed by the proposed joint analysis. COMPARISON WITH EXISTING METHODS: The existing methods do not provide the information obtainable with the proposed method: for the first time, the spike type compositions of bursts are analyzed. CONCLUSIONS: We showed that the proposed method provides useful and novel information, including the possible changes in the spike type compositions of the bursts due to external factors. Our method can be employed on any data exhibiting sortable action potential waveforms and detectable bursts.


Subject(s)
Electrophysiological Phenomena/drug effects , Electrophysiological Phenomena/physiology , Excitatory Amino Acid Antagonists/pharmacology , Nerve Net/drug effects , Nerve Net/physiology , Signal Processing, Computer-Assisted , 6-Cyano-7-nitroquinoxaline-2,3-dione/pharmacology , Action Potentials/drug effects , Action Potentials/physiology , Cells, Cultured , Humans , Neural Stem Cells
SELECTION OF CITATIONS
SEARCH DETAIL
...