Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Neonatal Screen ; 5(3): 27, 2019 Sep.
Article in English | MEDLINE | ID: mdl-33072986

ABSTRACT

Duchenne muscular dystrophy (DMD/Duchenne) is a progressive X-linked disease and is the most common pediatric-onset form of muscular dystrophy, affecting approximately 1:5000 live male births. DNA testing for mutations in the dystrophin gene confirms the diagnosis of this disorder. This study involves assessment of screening newborns for DMD using an immunoassay for muscle-type (MM) creatine kinase (CK) isoform-the GSP Neonatal CK-MM kit. Comparisons were made with CK activity determination by fluorescence measurement. In addition, the study evaluated the effect of gestational age, age of infant at time of sampling and how stable the CK-MM was over time. This assay discriminates well between normal, unaffected and Duchenne affected populations and is suitable for Duchenne newborn screening.

2.
Clin Chem ; 63(4): 908-914, 2017 04.
Article in English | MEDLINE | ID: mdl-28209627

ABSTRACT

BACKGROUND: Duchenne muscular dystrophy (DMD) is a progressive, lethal X-linked neuromuscular disorder with an average worldwide incidence of 1:5000. Blood spot creatine kinase (CK) enzyme assays previously used in newborn screening programs for DMD are nonspecific because measured CK enzyme activity is attributable to 3 isoenzyme forms of CK (CK-MM, CK-MB, and CK-BB) and it is the CK-MM isoform that is found predominantly in skeletal muscle. CK-MM is increased in boys with DMD owing to muscle damage. We describe a sensitive and specific automated immunoassay for CK-MM to screen for DMD in blood spots. METHODS: The prototype assay was developed on the PerkinElmer GSP® analyzer to enable high-throughput screening. CK-MM was assayed using a solid phase, 2-site immunofluorometric system. Purified human CK-MM was used to create calibrators and controls. RESULTS: The limit of blank (LOB), detection (LOD), and quantification (LOQ) values were <1, 3, and 8 ng/mL, respectively. The analytical measurement range was 4-8840 ng/mL. Interassay (n = 40) imprecision was <7% across the analytical range. Cross-reactivity was <5% for CK-MB and 0% for CK-BB. The mean recovery of CK-MM was 101% (range 87%-111%). Blood spots from newborn infants (n = 277) had a mean CK-MM concentration of 155 ng/mL and a 99th centile of 563 ng/mL. The mean blood spot CK-MM concentration from 10 cases of DMD was 5458 ng/mL (range 1217-9917 ng/mL). CONCLUSIONS: CK-MM can be reliably quantified in blood spots. The development of this CK-MM assay on a commercial immunoassay analyzer would enable standardized and high-throughput newborn blood spot screening of DMD.


Subject(s)
Creatine Kinase/blood , High-Throughput Screening Assays , Immunoassay , Muscle, Skeletal/enzymology , Muscular Dystrophy, Duchenne/diagnosis , Adult , Creatine Kinase/metabolism , Female , Humans , Infant , Infant, Newborn , Isoenzymes/blood , Isoenzymes/metabolism , Male , Middle Aged , Muscular Dystrophy, Duchenne/blood
3.
Anal Bioanal Chem ; 399(4): 1677-82, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21161513

ABSTRACT

The limitation of current dissociative fluorescence enhancement techniques is that the lanthanide chelate structures used as molecular probes are not stable enough in one-step assays with high concentrations of complexones or metal ions in the reaction mixture since these substances interfere with lanthanide chelate conjugated to the detector molecule. Lanthanide chelates of diethylenetriaminepentaacetic acid (DTPA) are extremely stable, and we used EuDTPA derivatives conjugated to antibodies as tracers in one-step immunoassays containing high concentrations of complexones or metal ions. Enhancement solutions based on different ß-diketones were developed and tested for their fluorescence-enhancing capability in immunoassays with EuDTPA-labelled antibodies. Characteristics tested were fluorescence intensity, analytical sensitivity, kinetics of complex formation and signal stability. Formation of fluorescent complexes is fast (5 min) in the presented enhancement solution with EuDTPA probes withstanding strong complexones (ethylenediaminetetra acetate (EDTA) up to 100 mM) or metal ions (up to 200 µM) in the reaction mixture, the signal is intensive, stable for 4 h and the analytical sensitivity with Eu is 40 fmol/L, Tb 130 fmol/L, Sm 2.1 pmol/L and Dy 8.5 pmol/L. With the improved fluorescence enhancement technique, EDTA and citrate plasma samples as well as samples containing relatively high concentrations of metal ions can be analysed using a one-step immunoassay format also at elevated temperatures. It facilitates four-plexing, is based on one chelate structure for detector molecule labelling and is suitable for immunoassays due to the wide dynamic range and the analytical sensitivity.


Subject(s)
Chorionic Gonadotropin, beta Subunit, Human/blood , Fluorescence , Immunoassay , Antibodies/chemistry , Chelating Agents/chemistry , Humans , Lanthanoid Series Elements/chemistry , Organometallic Compounds/chemistry , Reference Values , Spectrometry, Fluorescence , Staining and Labeling , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...