Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
1.
Cells ; 12(10)2023 05 18.
Article in English | MEDLINE | ID: mdl-37408256

ABSTRACT

Organotypic slice culture models surpass conventional in vitro methods in many aspects. They retain all tissue-resident cell types and tissue hierarchy. For studying multifactorial neurodegenerative diseases such as tauopathies, it is crucial to maintain cellular crosstalk in an accessible model system. Organotypic slice cultures from postnatal tissue are an established research tool, but adult tissue-originating systems are missing, yet necessary, as young tissue-originating systems cannot fully model adult or senescent brains. To establish an adult-originating slice culture system for tauopathy studies, we made hippocampal slice cultures from transgenic 5-month-old hTau.P301S mice. In addition to the comprehensive characterization, we set out to test a novel antibody for hyperphosphorylated TAU (pTAU, B6), with and without a nanomaterial conjugate. Adult hippocampal slices retained intact hippocampal layers, astrocytes, and functional microglia during culturing. The P301S-slice neurons expressed pTAU throughout the granular cell layer and secreted pTAU to the culture medium, whereas the wildtype slices did not. Additionally, cytotoxicity and inflammation-related determinants were increased in the P301S slices. Using fluorescence microscopy, we showed target engagement of the B6 antibody to pTAU-expressing neurons and a subtle but consistent decrease in intracellular pTAU with the B6 treatment. Collectively, this tauopathy slice culture model enables measuring the extracellular and intracellular effects of different mechanistic or therapeutic manipulations on TAU pathology in adult tissue without the hindrance of the blood-brain barrier.


Subject(s)
Tauopathies , Mice , Animals , Tauopathies/metabolism , Mice, Transgenic , Neurons/metabolism , Brain/metabolism , Hippocampus/metabolism
2.
Neurobiol Dis ; 182: 106140, 2023 06 15.
Article in English | MEDLINE | ID: mdl-37120095

ABSTRACT

The rare A673T variant was the first variant found within the amyloid precursor protein (APP) gene conferring protection against Alzheimer's disease (AD). Thereafter, different studies have discovered that the carriers of the APP A673T variant show reduced levels of amyloid beta (Aß) in the plasma and better cognitive performance at high age. Here, we analyzed cerebrospinal fluid (CSF) and plasma of APP A673T carriers and control individuals using a mass spectrometry-based proteomics approach to identify differentially regulated targets in an unbiased manner. Furthermore, the APP A673T variant was introduced into 2D and 3D neuronal cell culture models together with the pathogenic APP Swedish and London mutations. Consequently, we now report for the first time the protective effects of the APP A673T variant against AD-related alterations in the CSF, plasma, and brain biopsy samples from the frontal cortex. The CSF levels of soluble APPß (sAPPß) and Aß42 were significantly decreased on average 9-26% among three APP A673T carriers as compared to three well-matched controls not carrying the protective variant. Consistent with these CSF findings, immunohistochemical assessment of cortical biopsy samples from the same APP A673T carriers did not reveal Aß, phospho-tau, or p62 pathologies. We identified differentially regulated targets involved in protein phosphorylation, inflammation, and mitochondrial function in the CSF and plasma samples of APP A673T carriers. Some of the identified targets showed inverse levels in AD brain tissue with respect to increased AD-associated neurofibrillary pathology. In 2D and 3D neuronal cell culture models expressing APP with the Swedish and London mutations, the introduction of the APP A673T variant resulted in lower sAPPß levels. Concomitantly, the levels of sAPPα were increased, while decreased levels of CTFß and Aß42 were detected in some of these models. Our findings emphasize the important role of APP-derived peptides in the pathogenesis of AD and demonstrate the effectiveness of the protective APP A673T variant to shift APP processing towards the non-amyloidogenic pathway in vitro even in the presence of two pathogenic mutations.


Subject(s)
Alzheimer Disease , Amyloid beta-Protein Precursor , Humans , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Alzheimer Disease/cerebrospinal fluid , Amyloid beta-Peptides/metabolism , Heterozygote , Brain/metabolism
3.
Neurobiol Dis ; 163: 105603, 2022 02.
Article in English | MEDLINE | ID: mdl-34954322

ABSTRACT

Alzheimer's disease (AD) is the most common form of dementia, which is neuropathologically characterized by extracellular senile plaques containing amyloid-ß and intracellular neurofibrillary tangles composed of hyperphosphorylated tau protein. Previous studies have suggested a role for septin (SEPTIN) protein family members in AD-associated cellular processes. Here, we elucidated the potential role of presynaptic SEPTIN5 protein and its post-translational modifications in the molecular pathogenesis of AD. RNA and protein levels of SEPTIN5 showed a significant decrease in human temporal cortex in relation to the increasing degree of AD-related neurofibrillary pathology. Conversely, an increase in the phosphorylation of the functionally relevant SEPTIN5 phosphorylation site S327 was observed already in the early phases of AD-related neurofibrillary pathology, but not in the cerebrospinal fluid of individuals fulfilling the criteria for mild cognitive impairment due to AD. According to the mechanistic assessments, a link between SEPTIN5 S327 phosphorylation status and the effects of SEPTIN5 on amyloid precursor protein processing and markers of autophagy was discovered in mouse primary cortical neurons transduced with lentiviral constructs encoding wild type SEPTIN5 or SEPTIN5 phosphomutants (S327A and S327D). C57BL/6 J mice intrahippocampally injected with lentiviral wild type SEPTIN5 or phosphomutant constructs did not show changes in cognitive performance after five to six weeks from the start of injections. However, SEPTIN5 S327 phosphorylation status was linked to changes in short-term synaptic plasticity ex vivo at the CA3-CA1 synapse. Collectively, these data suggest that SEPTIN5 and its S327 phosphorylation status play a pivotal role in several cellular processes relevant for AD.


Subject(s)
Hippocampus/metabolism , Neurofibrillary Tangles/metabolism , Septins/metabolism , Synapses/metabolism , Animals , Autophagy/physiology , Disease Models, Animal , Hippocampus/pathology , Humans , Mice , Neurofibrillary Tangles/pathology , Neurons/metabolism , Neurons/pathology , Phosphorylation , Synapses/pathology
4.
J Clin Med ; 10(5)2021 Mar 06.
Article in English | MEDLINE | ID: mdl-33800840

ABSTRACT

Leucine-rich-alpha-2-glykoprotein (LRG) is suggested as a potential biomarker for idiopathic normal pressure hydrocephalus (iNPH). Our goal was to compare the cerebrospinal fluid (CSF) LRG levels between 119 iNPH patients and 33 age-matched controls and with the shunt responses and the brain biopsy Alzheimer's disease (AD) pathology among the iNPH patients. CSF LRG, Aß1-42, P-tau181, and T-tau were measured by using commercial ELISAs. The LRG levels in the CSF were significantly increased in the iNPH patients (p < 0.001) as compared to the controls, regardless of the AD pathology. However, CSF LRG did not correlate with the shunt response in contrast to the previous findings. The CSF AD biomarkers, i.e., Aß1-42, T-tau, and P-tau correlated with the brain biopsy AD pathology as expected but were systematically lower in the iNPH patients when compared to the controls (<0.001). Our findings support that the LRG levels in the CSF are potentially useful for the diagnostics of iNPH, independent of the brain AD pathology, but contrary to previous findings, not for predicting the shunt response. Our findings also suggest a need for specific reference values of the CSF AD biomarkers for the diagnostics of comorbid AD pathology in the iNPH patients.

5.
Cells ; 10(4)2021 04 09.
Article in English | MEDLINE | ID: mdl-33918872

ABSTRACT

Methyl-CpG-binding protein 2 (MECP2) is a critical transcriptional regulator for synaptic function. Dysfunction of synapses, as well as microglia-mediated neuroinflammation, represent the earliest pathological events in Alzheimer's disease (AD). Here, expression, protein levels, and activity-related phosphorylation changes of MECP2 were analyzed in post-mortem human temporal cortex. The effects of wild type and phosphorylation-deficient MECP2 variants at serine 423 (S423) or S80 on microglial and neuronal function were assessed utilizing BV2 microglial monocultures and co-cultures with mouse cortical neurons under inflammatory stress conditions. MECP2 phosphorylation at the functionally relevant S423 site nominally decreased in the early stages of AD-related neurofibrillary pathology in the human temporal cortex. Overexpression of wild type MECP2 enhanced the pro-inflammatory response in BV2 cells upon treatment with lipopolysaccharide (LPS) and interferon-γ (IFNγ) and decreased BV2 cell phagocytic activity. The expression of the phosphorylation-deficient MECP2-S423A variant, but not S80A, further increased the pro-inflammatory response of BV2 cells. In neurons co-cultured with BV2 cells, the MECP2-S423A variant increased the expression of several genes, which are important for the maintenance and protection of neurons and synapses upon inflammatory stress. Collectively, functional analyses in different cellular models suggest that MECP2 may influence the inflammatory response in microglia independently of S423 and S80 phosphorylation, while the S423 phosphorylation might play a role in the activation of neuronal gene expression, which conveys neuroprotection under neuroinflammation-related stress.


Subject(s)
Gene Expression Regulation , Inflammation/pathology , Methyl-CpG-Binding Protein 2/metabolism , Microglia/metabolism , Microglia/pathology , Neurons/metabolism , Neurons/pathology , Phosphoserine/metabolism , Alzheimer Disease/pathology , Animals , Brain/pathology , Brain-Derived Neurotrophic Factor/metabolism , Cell Adhesion Molecules, Neuronal/metabolism , Coculture Techniques , Interferon-gamma , Lipopolysaccharides , Mice, Inbred C57BL , Phagocytosis , Phosphorylation , Transcription, Genetic , Zymosan
6.
Neuroimage ; 234: 117987, 2021 07 01.
Article in English | MEDLINE | ID: mdl-33762218

ABSTRACT

Isoflurane, the most commonly used preclinical anesthetic, induces brain plasticity and long-term cellular and molecular changes leading to behavioral and/or cognitive consequences. These changes are most likely associated with network-level changes in brain function. To elucidate the mechanisms underlying long-term effects of isoflurane, we investigated the influence of a single isoflurane exposure on functional connectivity, brain electrical activity, and gene expression. Male Wistar rats (n = 22) were exposed to 1.8% isoflurane for 3 h. Control rats (n = 22) spent 3 h in the same room without exposure to anesthesia. After 1 month, functional connectivity was evaluated with resting-state functional magnetic resonance imaging (fMRI; n = 6 + 6) and local field potential measurements (n = 6 + 6) in anesthetized animals. A whole genome expression analysis (n = 10+10) was also conducted with mRNA-sequencing from cortical and hippocampal tissue samples. Isoflurane treatment strengthened thalamo-cortical and hippocampal-cortical functional connectivity. Cortical low-frequency fMRI power was also significantly increased in response to the isoflurane treatment. The local field potential results indicating strengthened hippocampal-cortical alpha and beta coherence were in good agreement with the fMRI findings. Furthermore, altered expression was found in 20 cortical genes, several of which are involved in neuronal signal transmission, but no gene expression changes were noted in the hippocampus. Isoflurane induced prolonged changes in thalamo-cortical and hippocampal-cortical function and expression of genes contributing to signal transmission in the cortex. Further studies are required to investigate whether these changes are associated with the postoperative behavioral and cognitive symptoms commonly observed in patients and animals.


Subject(s)
Anesthetics, Inhalation/administration & dosage , Brain/diagnostic imaging , Isoflurane/administration & dosage , Magnetic Resonance Imaging/trends , Nerve Net/diagnostic imaging , Neuronal Plasticity/drug effects , Anesthetics, Inhalation/toxicity , Animals , Brain/drug effects , Isoflurane/toxicity , Male , Nerve Net/drug effects , Neuronal Plasticity/physiology , Rats , Rats, Wistar , Time Factors
7.
Cells ; 9(11)2020 11 15.
Article in English | MEDLINE | ID: mdl-33203136

ABSTRACT

Alzheimer's disease (AD) is a neurodegenerative disease characterized by aberrant amyloid-ß (Aß) and hyperphosphorylated tau aggregation. We have previously investigated the involvement of SEPTIN family members in AD-related cellular processes and discovered a role for SEPTIN8 in the sorting and accumulation of ß-secretase. Here, we elucidated the potential role of SEPTIN5, an interaction partner of SEPTIN8, in the cellular processes relevant for AD, including amyloid precursor protein (APP) processing and the generation of Aß. The in vitro and in vivo studies both revealed that the downregulation of SEPTIN5 reduced the levels of APP C-terminal fragments (APP CTFs) and Aß in neuronal cells and in the cortex of Septin5 knockout mice. Mechanistic elucidation revealed that the downregulation of SEPTIN5 increased the degradation of APP CTFs, without affecting the secretory pathway-related trafficking or the endocytosis of APP. Furthermore, we found that the APP CTFs were degraded, to a large extent, via the autophagosomal pathway and that the downregulation of SEPTIN5 enhanced autophagosomal activity in neuronal cells as indicated by altered levels of key autophagosomal markers. Collectively, our data suggest that the downregulation of SEPTIN5 increases the autophagy-mediated degradation of APP CTFs, leading to reduced levels of Aß in neuronal cells.


Subject(s)
Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/metabolism , Autophagy/physiology , Cell Cycle Proteins/metabolism , Septins/metabolism , Animals , Brain/metabolism , Cell Cycle Proteins/genetics , Endocytosis/physiology , Humans , Mice , Mice, Knockout , Neurodegenerative Diseases/metabolism , Neurons/metabolism , Peptide Fragments/metabolism , Protein Transport/physiology , Septins/genetics
8.
Mol Neurodegener ; 15(1): 66, 2020 11 10.
Article in English | MEDLINE | ID: mdl-33168021

ABSTRACT

BACKGROUND: Alzheimer's disease (AD) is the most common neurodegenerative disease and type 2 diabetes (T2D) plays an important role in conferring the risk for AD. Although AD and T2D share common features, the common molecular mechanisms underlying these two diseases remain elusive. METHODS: Mice with different AD- and/or tauopathy-linked genetic backgrounds (APPswe/PS1dE9, Tau P301L and APPswe/PS1dE9/Tau P301L) were fed for 6 months with standard diet or typical Western diet (TWD). After behavioral and metabolic assessments of the mice, the effects of TWD on global gene expression as well as dystrophic neurite and microglia pathology were elucidated. Consequently, mechanistic aspects related to autophagy, cell survival, phagocytic uptake as well as Trem2/Dap12 signaling pathway, were assessed in microglia upon modulation of PI3K-Akt signaling. To evaluate whether the mouse model-derived results translate to human patients, the effects of diabetic phenotype on microglial pathology were assessed in cortical biopsies of idiopathic normal pressure hydrocephalus (iNPH) patients encompassing ß-amyloid pathology. RESULTS: TWD led to obesity and diabetic phenotype in all mice regardless of the genetic background. TWD also exacerbated memory and learning impairment in APPswe/PS1dE9 and Tau P301L mice. Gene co-expression network analysis revealed impaired microglial responses to AD-related pathologies in APPswe/PS1dE9 and APPswe/PS1dE9/Tau P301L mice upon TWD, pointing specifically towards aberrant microglial functionality due to altered downstream signaling of Trem2 and PI3K-Akt. Accordingly, fewer microglia, which did not show morphological changes, and increased number of dystrophic neurites around ß-amyloid plaques were discovered in the hippocampus of TWD mice. Mechanistic studies in mouse microglia revealed that interference of PI3K-Akt signaling significantly decreased phagocytic uptake and proinflammatory response. Moreover, increased activity of Syk-kinase upon ligand-induced activation of Trem2/Dap12 signaling was detected. Finally, characterization of microglial pathology in cortical biopsies of iNPH patients revealed a significant decrease in the number of microglia per ß-amyloid plaque in obese individuals with concomitant T2D as compared to both normal weight and obese individuals without T2D. CONCLUSIONS: Collectively, these results suggest that diabetic phenotype in mice and humans mechanistically associates with abnormally reduced microglial responses to ß-amyloid pathology and further suggest that AD and T2D share overlapping pathomechanisms, likely involving altered immune function in the brain.


Subject(s)
Alzheimer Disease/pathology , Brain/pathology , Diabetes Mellitus, Type 2/pathology , Microglia/pathology , Plaque, Amyloid/pathology , Alzheimer Disease/metabolism , Animals , Brain/metabolism , Diabetes Mellitus, Type 2/metabolism , Humans , Mice , Microglia/metabolism , Phenotype
9.
Front Neurol ; 11: 550140, 2020.
Article in English | MEDLINE | ID: mdl-33123074

ABSTRACT

Hexanucleotide repeat expansion (HRE) in the chromosome 9 open-reading frame 72 (C9orf72) gene is the most common genetic cause underpinning frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS). It leads to the accumulation of toxic RNA foci and various dipeptide repeat (DPR) proteins into cells. These C9orf72 HRE-specific hallmarks are abundant in neurons. So far, the role of microglia, the immune cells of the brain, in C9orf72 HRE-associated FTLD/ALS is unclear. In this study, we overexpressed C9orf72 HRE of a pathological length in the BV-2 microglial cell line and used biochemical methods and fluorescence imaging to investigate its effects on their phenotype, viability, and functionality. We found that BV-2 cells expressing the C9orf72 HRE presented strong expression of specific DPR proteins but no sense RNA foci. Transiently increased levels of cytoplasmic TAR DNA-binding protein 43 (TDP-43), slightly altered levels of p62 and lysosome-associated membrane protein (LAMP) 2A, and reduced levels of polyubiquitinylated proteins, but no signs of cell death were detected in HRE overexpressing cells. Overexpression of the C9orf72 HRE did not affect BV-2 cell phagocytic activity or response to an inflammatory stimulus, nor did it shift their RNA profile toward disease-associated microglia. These findings suggest that DPR proteins do not affect microglial cell viability or functionality in BV-2 cells. However, additional studies in other models are required to further elucidate the role of C9orf72 HRE in microglia.

10.
Mol Neurodegener ; 15(1): 52, 2020 09 11.
Article in English | MEDLINE | ID: mdl-32917267

ABSTRACT

BACKGROUND: Microglia-specific genetic variants are enriched in several neurodegenerative diseases, including Alzheimer's disease (AD), implicating a central role for alterations of the innate immune system in the disease etiology. A rare coding variant in the PLCG2 gene (rs72824905, p.P522R) expressed in myeloid lineage cells was recently identified and shown to reduce the risk for AD. METHODS: To assess the role of the protective variant in the context of immune cell functions, we generated a Plcγ2-P522R knock-in (KI) mouse model using CRISPR/Cas9 gene editing. RESULTS: Functional analyses of macrophages derived from homozygous KI mice and wild type (WT) littermates revealed that the P522R variant potentiates the primary function of Plcγ2 as a Pip2-metabolizing enzyme. This was associated with improved survival and increased acute inflammatory response of the KI macrophages. Enhanced phagocytosis was observed in mouse BV2 microglia-like cells overexpressing human PLCγ2-P522R, but not in PLCγ2-WT expressing cells. Immunohistochemical analyses did not reveal changes in the number or morphology of microglia in the cortex of Plcγ2-P522R KI mice. However, the brain mRNA signature together with microglia-related PET imaging suggested enhanced microglial functions in Plcγ2-P522R KI mice. CONCLUSION: The AD-associated protective Plcγ2-P522R variant promotes protective functions associated with TREM2 signaling. Our findings provide further support for the idea that pharmacological modulation of microglia via TREM2-PLCγ2 pathway-dependent stimulation may be a novel therapeutic option for the treatment of AD.


Subject(s)
Alzheimer Disease/genetics , Alzheimer Disease/immunology , Phospholipase C gamma/genetics , Animals , Gene Knock-In Techniques , Genetic Variation , Humans , Macrophages , Mice , Mice, Inbred C57BL , Microglia/immunology , Phospholipase C gamma/immunology
11.
Acta Neuropathol ; 138(4): 631-652, 2019 10.
Article in English | MEDLINE | ID: mdl-31065832

ABSTRACT

The bridging integrator 1 gene (BIN1) is a major genetic risk factor for Alzheimer's disease (AD). In this report, we investigated how BIN1-dependent pathophysiological processes might be associated with Tau. We first generated a cohort of control and transgenic mice either overexpressing human MAPT (TgMAPT) or both human MAPT and BIN1 (TgMAPT;TgBIN1), which we followed-up from 3 to 15 months. In TgMAPT;TgBIN1 mice short-term memory deficits appeared earlier than in TgMAPT mice; however-unlike TgMAPT mice-TgMAPT;TgBIN1 mice did not exhibit any long-term or spatial memory deficits for at least 15 months. After killing the cohort at 18 months, immunohistochemistry revealed that BIN1 overexpression prevents both Tau mislocalization and somatic inclusion in the hippocampus, where an increase in BIN1-Tau interaction was also observed. We then sought mechanisms controlling the BIN1-Tau interaction. We developed a high-content screening approach to characterize modulators of the BIN1-Tau interaction in an agnostic way (1,126 compounds targeting multiple pathways), and we identified-among others-an inhibitor of calcineurin, a Ser/Thr phosphatase. We determined that calcineurin dephosphorylates BIN1 on a cyclin-dependent kinase phosphorylation site at T348, promoting the open conformation of the neuronal BIN1 isoform. Phosphorylation of this site increases the availability of the BIN1 SH3 domain for Tau interaction, as demonstrated by nuclear magnetic resonance experiments and in primary neurons. Finally, we observed that although the levels of the neuronal BIN1 isoform were unchanged in AD brains, phospho-BIN1(T348):BIN1 ratio was increased, suggesting a compensatory mechanism. In conclusion, our data support the idea that BIN1 modulates the AD risk through an intricate regulation of its interaction with Tau. Alteration in BIN1 expression or activity may disrupt this regulatory balance with Tau and have direct effects on learning and memory.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Memory Disorders/metabolism , Memory, Long-Term/physiology , Nerve Tissue Proteins/metabolism , Tauopathies/metabolism , Tumor Suppressor Proteins/metabolism , tau Proteins/metabolism , Adaptor Proteins, Signal Transducing/genetics , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Animals , Brain/metabolism , Brain/pathology , Memory Disorders/genetics , Memory Disorders/pathology , Mice , Mice, Transgenic , Nerve Tissue Proteins/genetics , Neurons/metabolism , Neurons/pathology , Phosphorylation , Spatial Memory/physiology , Tauopathies/genetics , Tauopathies/pathology , Tumor Suppressor Proteins/genetics
12.
Neurobiol Aging ; 75: 98-108, 2019 03.
Article in English | MEDLINE | ID: mdl-30554086

ABSTRACT

Type 2 diabetes mellitus (T2DM) increases the risk for Alzheimer's disease (AD). Human AD brains show reduced glucose metabolism as measured by [18F]fluoro-2-deoxy-2-D-glucose positron emission tomography (FDG-PET). Here, we used 14-month-old wild-type (WT) and APPSwe/PS1dE9 (APP/PS1) transgenic mice to investigate how a single dose of intranasal insulin modulates brain glucose metabolism using FDG-PET and affects spatial learning and memory. We also assessed how insulin influences the activity of Akt1 and Akt2 kinases, the expression of glial and neuronal markers, and autophagy in the hippocampus. Intranasal insulin moderately increased glucose metabolism and specifically activated Akt2 and its downstream signaling in the hippocampus of WT, but not APP/PS1 mice. Furthermore, insulin differentially affected the expression of homeostatic microglia markers P2ry12 and Cx3cr1 and autophagy in the hippocampus of WT and APP/PS1 mice. We found no evidence that a single dose of intranasal insulin improves overnight memory. Our results suggest that intranasal insulin exerts diverse effects on Akt2 signaling, autophagy, and the homeostatic status of microglia depending on the degree of AD-related pathology.


Subject(s)
Alzheimer Disease/metabolism , Amyloid beta-Protein Precursor/metabolism , Hippocampus/pathology , Proto-Oncogene Proteins c-akt/metabolism , Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Animals , Disease Models, Animal , Hippocampus/drug effects , Insulin/metabolism , Memory/drug effects , Mice , Neurons/metabolism , Presenilin-1/metabolism
13.
Neurobiol Dis ; 124: 454-468, 2019 04.
Article in English | MEDLINE | ID: mdl-30557660

ABSTRACT

No single-omic approach completely elucidates the multitude of alterations taking place in Alzheimer's disease (AD). Here, we coupled transcriptomic and phosphoproteomic approaches to determine the temporal sequence of changes in mRNA, protein, and phosphopeptide expression levels from human temporal cortical samples, with varying degree of AD-related pathology. This approach highlighted fluctuation in synaptic and mitochondrial function as the earliest pathological events in brain samples with AD-related pathology. Subsequently, increased expression of inflammation and extracellular matrix-associated gene products was observed. Interaction network assembly for the associated gene products, emphasized the complex interplay between these processes and the role of addressing post-translational modifications in the identification of key regulators. Additionally, we evaluate the use of decision trees and random forests in identifying potential biomarkers differentiating individuals with different degree of AD-related pathology. This multiomic and temporal sequence-based approach provides a better understanding of the sequence of events leading to AD.


Subject(s)
Alzheimer Disease/pathology , Gene Expression Profiling/methods , Proteomics/methods , Alzheimer Disease/metabolism , Alzheimer Disease/physiopathology , Humans , Systems Biology/methods
14.
J Alzheimers Dis ; 62(1): 269-278, 2018.
Article in English | MEDLINE | ID: mdl-29439323

ABSTRACT

A subset of C9orf72 repeat expansion-carrying frontotemporal dementia patients display an Alzheimer-like decrease in cerebrospinal fluid amyloid-ß (Aß) biomarker levels. We report that downregulation of C9orf72 in non-neuronal human cells overexpressing amyloid-ß protein precursor (AßPP) resulted in increased levels of secreted AßPP fragments and Aß, while levels of AßPP or its C-terminal fragments (CTFs) remained unchanged. In neuronal cells, AßPP and C83 CTF levels were decreased upon C9orf72 knockdown, but those of secreted AßPP fragments or Aß remained unchanged. C9orf72 protein levels significantly increased in human brain with advancing neurofibrillary pathology and positively correlated with brain Aß42 levels. Our data suggest that altered C9orf72 levels may lead to cell-type specific alterations in AßPP processing, but warrant further studies to clarify the underlying mechanisms.


Subject(s)
Amyloid beta-Peptides/metabolism , Brain/metabolism , C9orf72 Protein/metabolism , Brain/pathology , C9orf72 Protein/genetics , Cell Line, Tumor , Cohort Studies , Gene Expression , Gene Knockdown Techniques , HEK293 Cells , Humans , Neurofibrillary Tangles/metabolism , Neurofibrillary Tangles/pathology , Neurons/metabolism , Neurons/pathology , RNA, Messenger/metabolism , RNA, Small Interfering
15.
J Neuroinflammation ; 14(1): 215, 2017 Nov 07.
Article in English | MEDLINE | ID: mdl-29115990

ABSTRACT

BACKGROUND: DHCR24, involved in the de novo synthesis of cholesterol and protection of neuronal cells against different stress conditions, has been shown to be selectively downregulated in neurons of the affected brain areas in Alzheimer's disease. METHODS: Here, we investigated whether the overexpression of DHCR24 protects neurons against inflammation-induced neuronal death using co-cultures of mouse embryonic primary cortical neurons and BV2 microglial cells upon acute neuroinflammation. Moreover, the effects of DHCR24 overexpression on dendritic spine density and morphology in cultured mature mouse hippocampal neurons and on the outcome measures of ischemia-induced brain damage in vivo in mice were assessed. RESULTS: Overexpression of DHCR24 reduced the loss of neurons under inflammation elicited by LPS and IFN-γ treatment in co-cultures of mouse neurons and BV2 microglial cells but did not affect the production of neuroinflammatory mediators, total cellular cholesterol levels, or the activity of proteins linked with neuroprotective signaling. Conversely, the levels of post-synaptic cell adhesion protein neuroligin-1 were significantly increased upon the overexpression of DHCR24 in basal growth conditions. Augmentation of DHCR24 also increased the total number of dendritic spines and the proportion of mushroom spines in mature mouse hippocampal neurons. In vivo, overexpression of DHCR24 in striatum reduced the lesion size measured by MRI in a mouse model of transient focal ischemia. CONCLUSIONS: These results suggest that the augmentation of DHCR24 levels provides neuroprotection in acute stress conditions, which lead to neuronal loss in vitro and in vivo.


Subject(s)
Inflammation/metabolism , Neurons/metabolism , Neuroprotection/physiology , Oxidoreductases Acting on CH-CH Group Donors/metabolism , Animals , Brain Ischemia/metabolism , Brain Ischemia/pathology , Cell Death/physiology , Coculture Techniques , Hippocampus/metabolism , Hippocampus/pathology , Humans , Inflammation/pathology , Male , Mice , Microglia/metabolism , Neurons/pathology
16.
J Cell Sci ; 129(11): 2224-38, 2016 06 01.
Article in English | MEDLINE | ID: mdl-27084579

ABSTRACT

Dysfunction and loss of synapses are early pathogenic events in Alzheimer's disease. A central step in the generation of toxic amyloid-ß (Aß) peptides is the cleavage of amyloid precursor protein (APP) by ß-site APP-cleaving enzyme (BACE1). Here, we have elucidated whether downregulation of septin (SEPT) protein family members, which are implicated in synaptic plasticity and vesicular trafficking, affects APP processing and Aß generation. SEPT8 was found to reduce soluble APPß and Aß levels in neuronal cells through a post-translational mechanism leading to decreased levels of BACE1 protein. In the human temporal cortex, we identified alterations in the expression of specific SEPT8 transcript variants in a manner that correlated with Alzheimer's-disease-related neurofibrillary pathology. These changes were associated with altered ß-secretase activity. We also discovered that the overexpression of a specific Alzheimer's-disease-associated SEPT8 transcript variant increased the levels of BACE1 and Aß peptides in neuronal cells. These changes were related to an increased half-life of BACE1 and the localization of BACE1 in recycling endosomes. These data suggest that SEPT8 modulates ß-amyloidogenic processing of APP through a mechanism affecting the intracellular sorting and accumulation of BACE1.


Subject(s)
Amyloid Precursor Protein Secretases/metabolism , Amyloid beta-Peptides/metabolism , Aspartic Acid Endopeptidases/metabolism , Protein Processing, Post-Translational , Septins/metabolism , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Animals , Cell Line, Tumor , Down-Regulation , Gene Expression Profiling , HEK293 Cells , Half-Life , Hippocampus/pathology , Humans , Intracellular Space/metabolism , Mice, Inbred C57BL , Models, Biological , Neurofibrillary Tangles/genetics , Neurofibrillary Tangles/pathology , Neurons/metabolism , Protein Stability , Protein Transport , RNA Interference , RNA, Messenger/genetics , RNA, Messenger/metabolism , Septins/genetics , Temporal Lobe/metabolism , Temporal Lobe/pathology
17.
Neurobiol Dis ; 85: 187-205, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26563932

ABSTRACT

Accumulation of ß-amyloid (Aß) and phosphorylated tau in the brain are central events underlying Alzheimer's disease (AD) pathogenesis. Aß is generated from amyloid precursor protein (APP) by ß-site APP-cleaving enzyme 1 (BACE1) and γ-secretase-mediated cleavages. Ubiquilin-1, a ubiquitin-like protein, genetically associates with AD and affects APP trafficking, processing and degradation. Here, we have investigated ubiquilin-1 expression in human brain in relation to AD-related neurofibrillary pathology and the effects of ubiquilin-1 overexpression on BACE1, tau, neuroinflammation, and neuronal viability in vitro in co-cultures of mouse embryonic primary cortical neurons and microglial cells under acute neuroinflammation as well as neuronal cell lines, and in vivo in the brain of APdE9 transgenic mice at the early phase of the development of Aß pathology. Ubiquilin-1 expression was decreased in human temporal cortex in relation to the early stages of AD-related neurofibrillary pathology (Braak stages 0-II vs. III-IV). There was a trend towards a positive correlation between ubiquilin-1 and BACE1 protein levels. Consistent with this, ubiquilin-1 overexpression in the neuron-microglia co-cultures with or without the induction of neuroinflammation resulted in a significant increase in endogenously expressed BACE1 levels. Sustained ubiquilin-1 overexpression in the brain of APdE9 mice resulted in a moderate, but insignificant increase in endogenous BACE1 levels and activity, coinciding with increased levels of soluble Aß40 and Aß42. BACE1 levels were also significantly increased in neuronal cells co-overexpressing ubiquilin-1 and BACE1. Ubiquilin-1 overexpression led to the stabilization of BACE1 protein levels, potentially through a mechanism involving decreased degradation in the lysosomal compartment. Ubiquilin-1 overexpression did not significantly affect the neuroinflammation response, but decreased neuronal viability in the neuron-microglia co-cultures under neuroinflammation. Taken together, these results suggest that ubiquilin-1 may mechanistically participate in AD molecular pathogenesis by affecting BACE1 and thereby APP processing and Aß accumulation.


Subject(s)
Adaptor Proteins, Vesicular Transport/metabolism , Alzheimer Disease/metabolism , Amyloid Precursor Protein Secretases/metabolism , Aspartic Acid Endopeptidases/metabolism , Carrier Proteins/metabolism , Cell Cycle Proteins/metabolism , Adaptor Proteins, Signal Transducing , Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Animals , Autophagy-Related Proteins , Brain/metabolism , Brain/pathology , Cell Line, Tumor , Cell Survival/physiology , Coculture Techniques , Humans , Mice, Inbred C57BL , Mice, Transgenic , Microglia/metabolism , Microglia/pathology , Neurons/metabolism , Neurons/pathology , Peptide Fragments/metabolism , tau Proteins/metabolism
18.
J Alzheimers Dis ; 48(2): 507-16, 2015.
Article in English | MEDLINE | ID: mdl-26402014

ABSTRACT

The agonist-induced activation of human δ-opioid receptor (δOR) has been shown to increase ß- (BACE1) and γ-secretase activities leading to increased production of amyloid-ß (Aß) peptide. We have recently shown that phenylalanine to cysteine substitution at amino acid 27 in δOR (δOR-Phe27Cys) increases amyloid-ß protein precursor processing through altered endocytic trafficking. Also, a genetic meta-analysis of the δOR-Phe27Cys variation (rs1042114) in two independent Alzheimer's disease (AD) patient cohorts indicated that the heterozygosity of δOR-Phe27Cys increases the risk of AD. Here, we investigated α-, ß-, and γ-secretase activities in human brain with respect to δOR-Phe27Cys variation in the temporal cortex of 71 subjects with varying degree of AD-related neurofibrillary pathology (Braak stages I-VI). As a result, a significant increase in ß- (p = 0.03) and γ- (p = 0.01), but not α-secretase, activities was observed in late stage AD samples (Braak stages V-VI), which were heterozygous for δOR-Phe27Cys as compared to the δOR-Phe27 and δOR-Cys27 homozygotes. The augmented ß-secretase activity was not associated with increased mRNA expression or protein levels of BACE1 in the late stage AD patients, who were heterozygous for the δOR-Phe27Cys variation. These findings suggest that δOR-Phe27Cys variation modulates ß- and γ-secretase activity in the late stages of AD likely via post-translational mechanisms other than alterations in the mRNA or protein levels of BACE1, or, in the expression of γ-secretase complex components.


Subject(s)
Alzheimer Disease/enzymology , Alzheimer Disease/genetics , Amyloid Precursor Protein Secretases/metabolism , Aspartic Acid Endopeptidases/metabolism , Genetic Variation , Membrane Proteins/metabolism , Receptors, Opioid, delta/genetics , Aged, 80 and over , Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Chronic Disease , Female , Humans , Male , Neurofibrillary Tangles/enzymology , Neurofibrillary Tangles/genetics , Neurofibrillary Tangles/pathology , Peptide Fragments/metabolism , RNA, Messenger/metabolism , Temporal Lobe/enzymology , Temporal Lobe/pathology
19.
J Alzheimers Dis ; 43(2): 565-73, 2015.
Article in English | MEDLINE | ID: mdl-25096612

ABSTRACT

BACKGROUND: Several risk loci for Alzheimer's disease (AD) have been identified during recent years in large-scale genome-wide association studies. However, little is known about the mechanisms by which these loci influence AD pathogenesis. OBJECTIVE: To investigate the individual and combined risk effects of the newly identified AD loci. METHODS: Association of 12 AD risk loci with AD and AD-related cerebrospinal fluid (CSF) biomarkers was assessed. Furthermore, a polygenic risk score combining the effect sizes of the top 22 risk loci in AD was calculated for each individual among the clinical and neuropathological cohorts. Effects of individual risk loci and polygenic risk scores were assessed in relation to CSF biomarker levels as well as neurofibrillary pathology and different biochemical measures related to AD pathogenesis obtained from the temporal cortex. RESULTS: Polygenic risk scores associated with CSF amyloid-ß42 (Aß42) levels in the clinical cohort, and with soluble Aß42 levels and γ-secretase activity in the neuropathological cohort. The γ-secretase effect was independent of APOE. APOE-ε4 associated with CSF Aß42 (p < 0.001) levels. For the other risk loci, no significant associations with AD risk or CSF biomarkers were detected after multiple testing correction. CONCLUSIONS: AD risk loci polygenically contribute to Aß pathology in the CSF and temporal cortex, and this effect is potentially associated with increased γ-secretase activity.


Subject(s)
Alzheimer Disease/cerebrospinal fluid , Alzheimer Disease/genetics , Apolipoproteins E/genetics , Biomarkers/cerebrospinal fluid , Alzheimer Disease/pathology , Amyloid Precursor Protein Secretases/cerebrospinal fluid , Amyloid beta-Peptides/cerebrospinal fluid , Brain/metabolism , Cohort Studies , Disease Progression , Female , Genetic Testing , Genome-Wide Association Study , Genotype , Humans , Male , Neuropsychological Tests , Peptide Fragments/cerebrospinal fluid , Polymorphism, Single Nucleotide
20.
Neurosci Lett ; 580: 173-7, 2014 Sep 19.
Article in English | MEDLINE | ID: mdl-25123443

ABSTRACT

Remote areas connected to cortical infarcts, such as the thalamus, are affected by stroke due to delayed retrograde degeneration of afferent connections. This is temporally associated with the accumulation of ß-amyloid (Aß) and calcium. Here we tested a hypothesis that prevention of excessive Ca(2+) influx into the axoplasm via the reverse Na(+)/Ca(2+) exchanger (NCX) would provide axonal protection and eventually lessen the Aß and calcium load in the thalamus. We found that chronic treatment with a specific inhibitor of the reverse NCX, KB-R7943 (30mg/kg once daily, 27 days) after middle cerebral artery occlusion did not prevent atypical secondary pathology in the thalamus or improve functional outcome. The present data do not support a role for reverse NCX activity in the complex pathology within the thalamus after cerebral ischemia.


Subject(s)
Amyloid beta-Peptides/metabolism , Ischemic Attack, Transient/drug therapy , Peptide Fragments/metabolism , Sodium-Calcium Exchanger/antagonists & inhibitors , Thalamus/drug effects , Thiourea/analogs & derivatives , Animals , Calcium/metabolism , Ischemic Attack, Transient/metabolism , Ischemic Attack, Transient/physiopathology , Male , Motor Skills/drug effects , Rats, Wistar , Thalamus/metabolism , Thiourea/pharmacology , Thiourea/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...