Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Leuk Res ; 62: 56-63, 2017 11.
Article in English | MEDLINE | ID: mdl-28985623

ABSTRACT

Primary resistance to induction therapy is an unsolved clinical problem in acute myeloid leukemia (AML). Here we investigated drug resistance in AML at the level of cellular metabolism in order to identify early predictors of therapeutic response. Using extracellular flux analysis, we compared metabolic drug responses in AML cell lines sensitive or resistant to cytarabine or sorafenib after 24h of drug treatment to a small cell lung cancer (SCLC) cell line exposed to etoposide. Only drug-resistant AML cells maintained oxidative metabolism upon drug exposure while SCLC cells displayed an overall metabolic shift towards glycolysis, i.e. a Warburg effect to escape drug toxicity. Moreover, primary AML blasts displayed very low glycolytic activity, while oxygen consumption was readily detectable, indicating an essential role of oxidative pathways in the bioenergetics of AML blasts. In line with these observations, analysis of the mitochondrial membrane potential using tetramethylrhodamine ethyl ester staining and flow cytometry allowed for clear discrimination between drug sensitive and resistant AML cell line clones and primary blasts after 24h of treatment with cytarabine or sorafenib. Our data reveal a distinct metabolic phenotype of resistant AML cells and suggest that disrupting oxidative metabolism rather than glycolysis may enhance the cytotoxic effects of chemotherapy in AML.


Subject(s)
Cell Respiration/physiology , Drug Resistance, Neoplasm/physiology , Leukemia, Myeloid, Acute/metabolism , Cell Line, Tumor , Glycolysis/drug effects , Glycolysis/physiology , Humans , Oxidative Phosphorylation/drug effects
2.
J Cancer Res Clin Oncol ; 140(10): 1689-704, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24913304

ABSTRACT

PURPOSE: Head and neck squamous cell carcinoma (HNSCC) cell lines with cytoplasmically sequestered mutant p53 (p53(mut_c)) are frequently more resistant to cisplatin (CDDP) than cells with mutant but nuclear p53 (p53(mut_n)). The aim of the study was to identify underlying mechanisms implicated in CDDP resistance of HNSCC cells carrying cytoplasmic p53(mut). METHODS: Microarray analysis, quantitative reverse transcription polymerase chain reaction, Western blot analysis and immunocytochemistry were used to identify and evaluate candidate genes involved in CDDP resistance of p53(mut_c) cells. RNAi knockdown or treatment with inhibitors together with flow cytometry-based methods was used for functional assessment of the identified candidate genes. Cellular metabolic activity was assessed with the XTT assay, and the redox capacity of cells was evaluated by measuring cellular glutathione (GSH) levels. RESULTS: Upregulation of ABCC2 and ABCG2 transporters was observed in CDDP-resistant p53(mut_c) HNSCC cells. Furthermore, p53(mut_c) cells exhibited a pronounced side population that could be suppressed by RNAi knockdown of ABCG2 as well as treatment with the ATP-binding-cassette transporter inhibitors imatinib, MK571 and tariquidar. Metabolic activity and cellular GSH levels were higher in CDDP-resistant p53(mut_c) cells, consistent with a higher capacity to fend off cytotoxic oxidative effects such as those caused by CDDP treatment. Finally, ABCC2/G2 inhibition of HNSCC cells with MK571 markedly enhanced CDDP sensitivity of HNSCC cells. CONCLUSIONS: The observations in this study point to a major role of p53(mut_c) in conferring a stem cell like phenotype to HNSCC cells that is associated with ABCC2/G2 overexpression, high GSH and metabolic activity levels as well as CDDP resistance.


Subject(s)
ATP-Binding Cassette Transporters/metabolism , Antineoplastic Agents/pharmacology , Carcinoma, Squamous Cell/metabolism , Cisplatin/pharmacology , Cytoplasm/metabolism , Drug Resistance, Neoplasm , Glutathione/metabolism , Head and Neck Neoplasms/metabolism , Mutation , Tumor Suppressor Protein p53/genetics , ATP Binding Cassette Transporter, Subfamily G, Member 2 , Blotting, Western , Carcinoma, Squamous Cell/drug therapy , Cell Line, Tumor , Flow Cytometry , Gene Expression Regulation, Neoplastic , Head and Neck Neoplasms/drug therapy , Humans , Immunohistochemistry , Multidrug Resistance-Associated Protein 2 , Multidrug Resistance-Associated Proteins/metabolism , Neoplasm Proteins/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL
...