Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
J Med Chem ; 63(13): 6876-6897, 2020 07 09.
Article in English | MEDLINE | ID: mdl-32530624

ABSTRACT

Aldosterone synthase (CYP11B2) inhibitors have been explored in recent years as an alternative therapeutic option to mineralocorticoid receptor (MR) antagonists to reduce elevated aldosterone levels, which are associated with deleterious effects on various organ systems including the heart, vasculature, kidney, and central nervous system (CNS). A benzamide pyridine hit derived from a focused screen was successfully developed into a series of potent and selective 3-pyridyl isoindolin-1-ones CYP11B2 inhibitors. Our systematic structure-activity relationship study enabled us to identify unique structural features that result in high selectivity against the closely homologous cortisol synthase (CYP11B1). We evaluated advanced lead molecules, exemplified by compound 52, in an in vivo cynomolgus monkey acute adrenocorticotropic hormone (ACTH) challenge model and demonstrated a superior 100-fold in vivo selectivity against CYP11B1.


Subject(s)
Cytochrome P-450 CYP11B2/antagonists & inhibitors , Cytochrome P-450 Enzyme Inhibitors/chemistry , Cytochrome P-450 Enzyme Inhibitors/pharmacology , Drug Design , Isoindoles/chemistry , Pyridines/chemistry , Pyridines/pharmacology , Administration, Oral , Animals , Cytochrome P-450 Enzyme Inhibitors/administration & dosage , Cytochrome P-450 Enzyme Inhibitors/pharmacokinetics , Drug Stability , Humans , Models, Molecular , Molecular Conformation , Pyridines/administration & dosage , Pyridines/pharmacokinetics , Rats , Structure-Activity Relationship , Tissue Distribution
2.
Org Biomol Chem ; 14(25): 5922-7, 2016 Jul 07.
Article in English | MEDLINE | ID: mdl-27245438

ABSTRACT

A series of cyclopenta[c]pyridine aldosterone synthase (AS) inhibitors were conveniently accessed using batch or continuous flow Kondrat'eva reactions. Preparation of the analogous cyclohexa[c]pyridines led to the identification of a potent and more selective AS inhibitor. The structure-activity-relationship (SAR) in this new series was rationalized using binding mode models in the crystal structure of AS.


Subject(s)
Cytochrome P-450 CYP11B2/antagonists & inhibitors , Cytochrome P-450 Enzyme Inhibitors/chemical synthesis , Cytochrome P-450 Enzyme Inhibitors/pharmacology , Pyridines/chemical synthesis , Pyridines/pharmacology , Chemistry Techniques, Synthetic , Cytochrome P-450 CYP11B2/chemistry , Cytochrome P-450 Enzyme Inhibitors/chemistry , Humans , Models, Molecular , Protein Conformation , Pyridines/chemistry , Structure-Activity Relationship
3.
Chimia (Aarau) ; 69(7-8): 407-13, 2015.
Article in English | MEDLINE | ID: mdl-26507592

ABSTRACT

Medicinal chemistry has been transformed by major technological and conceptual innovations over the last three decades: structural biology and bioinformatics, structure and property based molecular design, the concepts of multidimensional optimization (MDO), in silico and experimental high-throughput molecular property analysis. The novel technologies advanced gradually and in synergy with biology and Roche has been at the forefront. Applications in drug discovery programs towards new medicines in cardiovascular and metabolic diseases are highlighted to show impact and advancement: the early discovery of endothelin antagonists for endothelial dysfunction (Bosentan), 11-beta hydroxysteroid dehydrogenase (11ß-HSD1) inhibitors for dysregulated cellular glucocorticoid tonus (type 2 diabetes and metabolic syndrome) and non-covalent hormone sensitive lipase (HSL) inhibitors to study the scope of direct inhibition of lipolysis in the conceptual frame of lipotoxicity and type 2 diabetes.


Subject(s)
Cardiovascular Diseases/drug therapy , Chemistry, Pharmaceutical/trends , Drug Delivery Systems , Metabolic Diseases/drug therapy , Animals , Cardiovascular Agents/therapeutic use , Drug Design , Humans
4.
J Med Chem ; 58(20): 8054-65, 2015 Oct 22.
Article in English | MEDLINE | ID: mdl-26403853

ABSTRACT

Inappropriately high levels of aldosterone are associated with many serious medical conditions, including renal and cardiac failure. A focused screen hit has been optimized into a potent and selective aldosterone synthase (CYP11B2) inhibitor with in vitro activity against rat, mouse, human, and cynomolgus monkey enzymes, showing a selectivity factor of 160 against cytochrome CYP11B1 in the last species. The novel tetrahydroisoquinoline compound (+)-(R)-6 selectively reduced aldosterone plasma levels in vivo in a dose-dependent manner in db/db mice and cynomolgus monkeys. The selectivity against CYP11B1 as predicted by cellular inhibition data and free plasma fraction translated well to Synacthen challenged cynomolgus monkeys up to a dose of 0.1 mg kg(-1). This compound, displaying good in vivo potency and selectivity in mice and monkeys, is ideally suited to perform mechanistic studies in relevant rodent models and to provide the information necessary for translation to non-human primates and ultimately to man.


Subject(s)
Cytochrome P-450 CYP11B2/antagonists & inhibitors , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacology , Mineralocorticoid Receptor Antagonists/chemical synthesis , Mineralocorticoid Receptor Antagonists/pharmacology , Tetrahydroisoquinolines/chemical synthesis , Tetrahydroisoquinolines/pharmacology , Aldosterone/blood , Animals , Drug Design , Drug Discovery , Humans , Macaca fascicularis , Male , Mice , Mice, Inbred DBA , Models, Molecular , Rats
5.
Chimia (Aarau) ; 69(7): 407-413, 2015 Aug 19.
Article in English | MEDLINE | ID: mdl-28482972

ABSTRACT

Medicinal chemistry has been transformed by major technological and conceptual innovations over the last three decades: structural biology and bioinformatics, structure and property based molecular design, the concepts of multidimensional optimization (MDO), in silico and experimental high-throughput molecular property analysis. The novel technologies advanced gradually and in synergy with biology and Roche has been at the forefront. Applications in drug discovery programs towards new medicines in cardiovascular and metabolic diseases are highlighted to show impact and advancement: the early discovery of endothelin antagonists for endothelial dysfunction (Bosentan), 11-beta hydroxysteroid dehydrogenase (11ß-HSD1) inhibitors for dysregulated cellular glucocorticoid tonus (type 2 diabetes and metabolic syndrome) and non-covalent hormone sensitive lipase (HSL) inhibitors to study the scope of direct inhibition of lipolysis in the conceptual frame of lipotoxicity and type 2 diabetes.

6.
Chimia (Aarau) ; 64(9): 662-6, 2010.
Article in English | MEDLINE | ID: mdl-21138110

ABSTRACT

During a half-day symposium, the topic 'Channels and Transporters' was covered with five lectures, including a presentation on 'Introduction and Basics of Channels and Transporters' by Beat Ernst, lectures on structure, function and physiology of channels and transporters ('The Structural Basis for Ion Conduction and Gating in Pentameric Ligand-Gated Ion Channels' by Raimund Dutzler and 'Uptake and Efflux Transporters for Endogenous Substances and for Drugs' by Dietrich Keppler), and a case study lecture on 'Avosentan' by Werner Neidhart. The program was completed by Matthias Hediger who introduced to the audience the National Center of Competence in Research (NCCR)-TransCure in his lecture entitled 'From Transport Physiology to Identification of Therapeutic Targets'.


Subject(s)
Antineoplastic Agents/pharmacology , Carrier Proteins/physiology , Ion Channels/physiology , Neoplasms/drug therapy , Neoplasms/metabolism , Congresses as Topic , Humans
7.
Bioorg Med Chem Lett ; 19(9): 2468-73, 2009 May 01.
Article in English | MEDLINE | ID: mdl-19349176

ABSTRACT

Design, synthesis, and SAR of novel alpha-alkoxy-beta-arylpropionic acids as potent and balanced PPARalphagamma coagonists are described. One representative thereof, Aleglitazar ((S)-2Aa), was chosen for clinical development. Its X-ray structure in complex with both receptors as well as its high efficacy in animal models of T2D and dyslipidemia are also presented.


Subject(s)
Diabetes Mellitus, Type 2/drug therapy , Oxazoles/chemical synthesis , Oxazoles/pharmacology , PPAR alpha/agonists , PPAR gamma/agonists , Thiophenes/chemical synthesis , Thiophenes/pharmacology , Animals , Chemistry, Pharmaceutical/methods , Crystallography, X-Ray/methods , Drug Design , Dyslipidemias/drug therapy , Humans , Inhibitory Concentration 50 , Ligands , Models, Chemical , Molecular Structure , Receptors, Cytoplasmic and Nuclear/metabolism
8.
ChemMedChem ; 4(6): 951-6, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19326383

ABSTRACT

An X-ray-guided design approach led to the identification of a novel, balanced class of alpha-ethoxy-phenylpropionic acid-derived dual PPARalpha/gamma agonists. The series shows a wide range of PPARalpha/gamma ratios within a rather narrow structural space. Advanced compounds possess favorable physicochemical and pharmacokinetic profiles and show a high efficacy in T2D and dyslipidemia animal models.


Subject(s)
Hypolipidemic Agents/chemistry , PPAR alpha/agonists , PPAR gamma/agonists , Phenylpropionates/chemistry , Animals , Computer Simulation , Crystallography, X-Ray , Diabetes Mellitus, Type 2/drug therapy , Drug Design , Humans , Hypolipidemic Agents/chemical synthesis , Hypolipidemic Agents/pharmacokinetics , Mice , PPAR alpha/metabolism , PPAR gamma/metabolism , Phenylpropionates/chemical synthesis , Phenylpropionates/pharmacokinetics , Rats , Stereoisomerism , Structure-Activity Relationship
9.
Bioorg Med Chem Lett ; 16(15): 4016-20, 2006 Aug 01.
Article in English | MEDLINE | ID: mdl-16737814

ABSTRACT

In the quest for novel PPARalpha/gamma co-agonists as putative drugs for the treatment of type 2 diabetes and dyslipidemia, we have used a structure-based design approach to identify propionic acids with a 1,5-disubstituted indole scaffold as potent PPARalpha/gamma activators. Compounds 13, 24, and 28 are examples of submicromolar dual agonists with different alpha/gamma EC50 ratios that are selective against the delta-isoform. Analysis of the X-ray complex structure of PPARgamma with the indole propionic acid 13 provides a rationalization for some of the observed SAR.


Subject(s)
Indoles/chemistry , Indoles/pharmacology , PPAR alpha/agonists , PPAR gamma/agonists , Drug Design , Molecular Structure , Structure-Activity Relationship , X-Ray Diffraction
10.
Mol Endocrinol ; 20(4): 809-30, 2006 Apr.
Article in English | MEDLINE | ID: mdl-16373399

ABSTRACT

Partial agonists of peroxisome proliferator-activated receptor-gamma (PPARgamma), also termed selective PPARgamma modulators, are expected to uncouple insulin sensitization from triglyceride (TG) storage in patients with type 2 diabetes mellitus. These agents shall thus avoid adverse effects, such as body weight gain, exerted by full agonists such as thiazolidinediones. In this context, we describe the identification and characterization of the isoquinoline derivative PA-082, a prototype of a novel class of non-thiazolidinedione partial PPARgamma ligands. In a cocrystal with PPARgamma it was bound within the ligand-binding pocket without direct contact to helix 12. The compound displayed partial agonism in biochemical and cell-based transactivation assays and caused preferential recruitment of PPARgamma-coactivator-1alpha (PGC1alpha) to the receptor, a feature shared with other selective PPARgamma modulators. It antagonized rosiglitazone-driven transactivation and TG accumulation during de novo adipogenic differentiation of murine C3H10T1/2 mesenchymal stem cells. The latter effect was mimicked by overexpression of wild-type PGC1alpha but not its LXXLL-deficient mutant. Despite failing to promote TG loading, PA-082 induced mRNAs of genes encoding components of insulin signaling and adipogenic differentiation pathways. It potentiated glucose uptake and inhibited the negative cross-talk of TNFalpha on protein kinase B (AKT) phosphorylation in mature adipocytes and HepG2 human hepatoma cells. PGC1alpha is a key regulator of energy expenditure and down-regulated in diabetics. We thus propose that selective recruitment of PGC1alpha to favorable PPARgamma-target genes provides a possible molecular mechanism whereby partial PPARgamma agonists dissociate TG accumulation from insulin signaling.


Subject(s)
Heat-Shock Proteins/metabolism , Insulin/metabolism , Isoquinolines/pharmacology , PPAR gamma/agonists , Trans-Activators/metabolism , Transcription Factors/metabolism , Triglycerides/metabolism , Adipocytes/cytology , Adipocytes/drug effects , Adipocytes/metabolism , Amino Acid Sequence , Animals , Base Sequence , Binding Sites , Cell Line , Crystallography, X-Ray , DNA, Complementary/genetics , Glucose/metabolism , Heat-Shock Proteins/genetics , Humans , In Vitro Techniques , Isoquinolines/chemistry , Mice , Models, Molecular , Molecular Sequence Data , PPAR gamma/chemistry , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha , Protein Conformation , RNA, Messenger/genetics , RNA, Messenger/metabolism , Signal Transduction/drug effects , Trans-Activators/genetics , Transcription Factors/genetics , Tumor Necrosis Factor-alpha/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...