Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Preprint in English | medRxiv | ID: ppmedrxiv-21265731

ABSTRACT

The SARS-CoV-2 Gamma variant spread rapidly across Brazil, causing substantial infection and death waves. We use individual-level patient records following hospitalisation with suspected or confirmed COVID-19 to document the extensive shocks in hospital fatality rates that followed Gammas spread across 14 state capitals, and in which more than half of hospitalised patients died over sustained time periods. We show that extensive fluctuations in COVID-19 in-hospital fatality rates also existed prior to Gammas detection, and were largely transient after Gammas detection, subsiding with hospital demand. Using a Bayesian fatality rate model, we find that the geographic and temporal fluctuations in Brazils COVID-19 in-hospital fatality rates are primarily associated with geographic inequities and shortages in healthcare capacity. We project that approximately half of Brazils COVID-19 deaths in hospitals could have been avoided without pre-pandemic geographic inequities and without pandemic healthcare pressure. Our results suggest that investments in healthcare resources, healthcare optimization, and pandemic preparedness are critical to minimize population wide mortality and morbidity caused by highly transmissible and deadly pathogens such as SARS-CoV-2, especially in low- and middle-income countries. NoteThe following manuscript has appeared as Report 46 - Factors driving extensive spatial and temporal fluctuations in COVID-19 fatality rates in Brazilian hospitals at https://spiral.imperial.ac.uk:8443/handle/10044/1/91875. One sentence summaryCOVID-19 in-hospital fatality rates fluctuate dramatically in Brazil, and these fluctuations are primarily associated with geographic inequities and shortages in healthcare capacity.

2.
Preprint in English | medRxiv | ID: ppmedrxiv-21258720

ABSTRACT

BackgroundTransmission of respiratory pathogens such as SARS-CoV-2 depends on patterns of contact and mixing across populations. Understanding this is crucial to predict pathogen spread and the effectiveness of control efforts. Most analyses of contact patterns to date have focussed on high-income settings. MethodsHere, we conduct a systematic review and individual-participant meta-analysis of surveys carried out in low- and middle-income countries and compare patterns of contact in these settings to surveys previously carried out in high-income countries. Using individual-level data from 28,503 participants and 413,069 contacts across 27 surveys we explored how contact characteristics (number, location, duration and whether physical) vary across income settings. ResultsContact rates declined with age in high- and upper-middle-income settings, but not in low-income settings, where adults aged 65+ made similar numbers of contacts as younger individuals and mixed with all age-groups. Across all settings, increasing household size was a key determinant of contact frequency and characteristics, but low-income settings were characterised by the largest, most intergenerational households. A higher proportion of contacts were made at home in low-income settings, and work/school contacts were more frequent in high-income strata. We also observed contrasting effects of gender across income-strata on the frequency, duration and type of contacts individuals made. ConclusionsThese differences in contact patterns between settings have material consequences for both spread of respiratory pathogens, as well as the effectiveness of different non-pharmaceutical interventions. FundingThis work is primarily being funded by joint Centre funding from the UK Medical Research Council and DFID (MR/R015600/1).

3.
Preprint in English | medRxiv | ID: ppmedrxiv-21252554

ABSTRACT

Cases of SARS-CoV-2 infection in Manaus, Brazil, resurged in late 2020, despite high levels of previous infection there. Through genome sequencing of viruses sampled in Manaus between November 2020 and January 2021, we identified the emergence and circulation of a novel SARS-CoV-2 variant of concern, lineage P.1, that acquired 17 mutations, including a trio in the spike protein (K417T, E484K and N501Y) associated with increased binding to the human ACE2 receptor. Molecular clock analysis shows that P.1 emergence occurred around early November 2020 and was preceded by a period of faster molecular evolution. Using a two-category dynamical model that integrates genomic and mortality data, we estimate that P.1 may be 1.4-2.2 times more transmissible and 25-61% more likely to evade protective immunity elicited by previous infection with non-P.1 lineages. Enhanced global genomic surveillance of variants of concern, which may exhibit increased transmissibility and/or immune evasion, is critical to accelerate pandemic responsiveness. One-Sentence SummaryWe report the evolution and emergence of a SARS-CoV-2 lineage of concern associated with rapid transmission in Manaus.

4.
Preprint in English | medRxiv | ID: ppmedrxiv-20197376

ABSTRACT

Following initial declines, in mid 2020, a resurgence in transmission of novel coronavirus disease (COVID-19) has occurred in the United States and parts of Europe. Despite the wide implementation of non-pharmaceutical interventions, it is still not known how they are impacted by changing contact patterns, age and other demographics. As COVID-19 disease control becomes more localised, understanding the age demographics driving transmission and how these impacts the loosening of interventions such as school reopening is crucial. Considering dynamics for the United States, we analyse aggregated, age-specific mobility trends from more than 10 million individuals and link these mechanistically to age-specific COVID-19 mortality data. In contrast to previous approaches, we link mobility to mortality via age-specific contact patterns and use this rich relationship to reconstruct accurate transmission dynamics. Contrary to anecdotal evidence, we find little support for age-shifts in contact and transmission dynamics over time. We estimate that, until August, 63.4% [60.9%-65.5%] of SARS-CoV-2 infections in the United States originated from adults aged 20-49, while 1.2% [0.8%-1.8%] originated from children aged 0- 9. In areas with continued, community-wide transmission, our transmission model predicts that re-opening kindergartens and elementary schools could facilitate spread and lead to additional COVID-19 attributable deaths over a 90-day period. These findings indicate that targeting interventions to adults aged 20-49 are an important consideration in halting resurgent epidemics and preventing COVID-19-attributable deaths when kindergartens and elementary schools reopen.

5.
Preprint in English | medRxiv | ID: ppmedrxiv-20152355

ABSTRACT

As of 1st June 2020, the US Centers for Disease Control and Prevention reported 104,232 confirmed or probable COVID-19-related deaths in the US. This was more than twice the number of deaths reported in the next most severely impacted country. We jointly modelled the US epidemic at the state-level, using publicly available death data within a Bayesian hierarchical semi-mechanistic framework. For each state, we estimate the number of individuals that have been infected, the number of individuals that are currently infectious and the time-varying reproduction number (the average number of secondary infections caused by an infected person). We used changes in mobility to capture the impact that non-pharmaceutical interventions and other behaviour changes have on the rate of transmission of SARS-CoV-2. Nationally, we estimated 3.7% [3.4%-4.0%] of the population had been infected by 1st June 2020, with wide variation between states, and approximately 0.01% of the population was infectious. We also demonstrated that good model forecasts of deaths for the next 3 weeks with low error and good coverage of our credible intervals.

6.
Preprint in English | medRxiv | ID: ppmedrxiv-20096701

ABSTRACT

1Brazil is currently reporting the second highest number of COVID-19 deaths in the world. Here we characterise the initial dynamics of COVID-19 across the country and assess the impact of non-pharmaceutical interventions (NPIs) that were implemented using a semi-mechanistic Bayesian hierarchical modelling approach. Our results highlight the significant impact these NPIs had across states, reducing an average Rt > 3 to an average of 1.5 by 9-May-2020, but that these interventions failed to reduce Rt < 1, congruent with the worsening epidemic Brazil has experienced since. We identify extensive heterogeneity in the epidemic trajectory across Brazil, with the estimated number of days to reach 0.1% of the state population infected since the first nationally recorded case ranging from 20 days in Sao Paulo compared to 60 days in Goias, underscoring the importance of sub-national analyses in understanding asynchronous state-level epidemics underlying the national spread and burden of COVID-19.

7.
Preprint in English | medRxiv | ID: ppmedrxiv-20089359

ABSTRACT

Italy was the first European country to experience sustained local transmission of COVID-19. As of 1st May 2020, the Italian health authorities reported 28,238 deaths nationally. To control the epidemic, the Italian government implemented a suite of non-pharmaceutical interventions (NPIs), including school and university closures, social distancing and full lockdown involving banning of public gatherings and non essential movement. In this report, we model the effect of NPIs on transmission using data on average mobility. We estimate that the average reproduction number (a measure of transmission intensity) is currently below one for all Italian regions, and significantly so for the majority of the regions. Despite the large number of deaths, the proportion of population that has been infected by SARS-CoV-2 (the attack rate) is far from the herd immunity threshold in all Italian regions, with the highest attack rate observed in Lombardy (13.18% [10.66%-16.70%]). Italy is set to relax the currently implemented NPIs from 4th May 2020. Given the control achieved by NPIs, we consider three scenarios for the next 8 weeks: a scenario in which mobility remains the same as during the lockdown, a scenario in which mobility returns to pre-lockdown levels by 20%, and a scenario in which mobility returns to pre-lockdown levels by 40%. The scenarios explored assume that mobility is scaled evenly across all dimensions, that behaviour stays the same as before NPIs were implemented, that no pharmaceutical interventions are introduced, and it does not include transmission reduction from contact tracing, testing and the isolation of confirmed or suspected cases. New interventions, such as enhanced testing and contact tracing are going to be introduced and will likely contribute to reductions in transmission; therefore our estimates should be viewed as pessimistic projections. We find that, in the absence of additional interventions, even a 20% return to pre-lockdown mobility could lead to a resurgence in the number of deaths far greater than experienced in the current wave in several regions. Future increases in the number of deaths will lag behind the increase in transmission intensity and so a second wave will not be immediately apparent from just monitoring of the daily number of deaths. Our results suggest that SARS-CoV-2 transmission as well as mobility should be closely monitored in the next weeks and months. To compensate for the increase in mobility that will occur due to the relaxation of the currently implemented NPIs, adherence to the recommended social distancing measures alongside enhanced community surveillance including swab testing, contact tracing and the early isolation of infections are of paramount importance to reduce the risk of resurgence in transmission. SUGGESTED CITATIONMichaela A. C. Vollmer, Swapnil Mishra, H Juliette T Unwin, Axel Gandy et al. Using mobility to estimate the transmission intensity of COVID-19 in Italy: a subnational analysis with future scenarios. Imperial College London (2020) doi:https://doi.org/10.25561/78677 This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

SELECTION OF CITATIONS
SEARCH DETAIL
...