Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
1.
Lancet Microbe ; 4(12): e983-e993, 2023 12.
Article in English | MEDLINE | ID: mdl-37865113

ABSTRACT

BACKGROUND: Efficacy of sulfadoxine-pyrimethamine, the malaria chemoprophylaxis used in pregnant women, and in children when combined with amodiaquine, is threatened by the accumulation of mutations in the Plasmodium falciparum dihydropteroate synthase (pfdhps) and dihydrofolate reductase (pfdhfr) genes. Data on the prevalence of resistant alleles in central Africa and the new pfdhps I431V mutation, particularly associated with other mutations to form the pfdhps vagKgs allele, are scarce. We explored the frequency and geographical distribution of pfdhps and pfdhfr mutations in central Africa in 2014-18, and assessed the evolutionary origin of the vagKgs allele. METHODS: Samples were collected at 18 health-care centres in seven countries (Angola, Cameroon, Central African Republic, Democratic Republic of the Congo, Gabon, Nigeria, and Republic of the Congo) from patients who showed possible symptoms of malaria between March 1, 2014, and Oct 31, 2018. Samples that were positive for P falciparum were transported to a laboratory in Toulouse, France, and genotyped. The frequency of pfdhfr and pfdhps mutations was studied in 1749 samples. Microsatellites in pfdhps flanking regions and whole-genome analysis compared with parasite genomes from the data-sharing network MalariaGEN were performed on samples carrying the vagKgs allele. FINDINGS: Mapping of the prevalence of single nucleotide polymorphisms and corresponding alleles of pfdhfr and pfdhps showed a substantial spread of alleles associated with sulfadoxine-pyrimethamine resistance in central Africa during the 2014-18 period, especially an increase going west to east in pfdhps alleles carrying the K540E and A581G mutations. A high prevalence of the pfdhps I431V mutation was observed in Cameroon (exceeding 50% in the northern region) and Nigeria. Genomic analysis showed a recent African emergence and a clonal expansion of the most frequent pfdhps vagKgs allele. INTERPRETATION: Reduced sulfadoxine-pyrimethamine efficacy due to increased resistance is a worrying situation, especially because the malaria transmission level is high in central Africa. Although the resistance phenotype remains to be confirmed, the emergence and spread of the vagKgs allele in west and central Africa could challenge the use of sulfadoxine-pyrimethamine. FUNDING: Toulouse Institute for Infectious and Inflammatory Diseases.


Subject(s)
Antimalarials , Malaria, Falciparum , Child , Humans , Female , Pregnancy , Plasmodium falciparum/genetics , Cross-Sectional Studies , Antimalarials/pharmacology , Antimalarials/therapeutic use , Drug Resistance/genetics , Malaria, Falciparum/drug therapy , Malaria, Falciparum/epidemiology , Malaria, Falciparum/prevention & control , Mutation , Africa, Central/epidemiology , Dihydropteroate Synthase/genetics
2.
Pathogens ; 12(7)2023 Jun 29.
Article in English | MEDLINE | ID: mdl-37513736

ABSTRACT

OBJECTIVES: We aimed to assess the performance of the Novodiag® Stool Parasites (NSP) assay in the diagnosis of the most common intestinal protozoan and microsporidia infections. METHODS: A panel of 167 selected stool samples was retrospectively analysed with the NSP assay and compared to routine microscopy and qPCR methods for the detection of pathogenic protozoa and microsporidia. RESULTS: Whereas specificity was high for all protozoa and microsporidia, NSP sensitivity was strongly dependent on the comparative method used as reference. When compared to microscopic methods, NSP sensitivity was high (96.7 to 100%) for Blastocystis hominis, Entamoeba histolytica and Cyclospora cayetanensis but was lower for Giardia intestinalis (85.2%) and ≤50% for Cystoisospora belli and Dientamoeba fragilis. In comparison to conventional qPCR, the NSP assay demonstrated lower sensitivity characteristics dependent on parasite loads, reaching 60 to 70% for G. intestinalis, D. fragilis, Cryptosporidium spp. and E. histolytica. Sensitivity was 100% for Enterocytozoon bieneusi, but none of the five samples containing Encephalitozoon spp. were detected. CONCLUSIONS: The overall performance of the NSP assay in the diagnosis of gastrointestinal protozoa and microsporidia seems to be better than or equivalent to that observed with microscopic methods but inferior to that obtainable with classical targeted qPCR.

3.
J Antimicrob Chemother ; 78(3): 665-668, 2023 03 02.
Article in English | MEDLINE | ID: mdl-36611259

ABSTRACT

BACKGROUND: A new mutation in the Plasmodium falciparum dihydropteroate synthetase gene (pfdhps), I431V, has been identified in several countries of Central and West Africa. This mutation is mostly found in association with four other SNPs on pfdhps (S436A, A437G, A581G and A613S), forming a quintuple mutant (vagKgs) and almost always associated with the Plasmodium falciparum dihydrofolate reductase gene (pfdhfr) CirnI (C50R, N51I, S108N) triple mutant. To date, nothing is known about the impact of this new pfdhps genotype on sulfadoxine-pyrimethamine (SP) resistance. OBJECTIVES: We sought to assess the prevalence of this pfdhps vagKgs quintuple mutant in two groups of pregnant women with malaria, one that took intermittent preventive treatment with sulfadoxine-pyrimethamine (IPTp-SP) and one that did not. METHODS: The pfdhfr and pfdhps genes from Plasmodium falciparum isolates collected in Yaoundé (Cameroon) from pregnant women with symptomatic malaria under IPTp-SP or not, were sequenced. RESULTS: Of 159 patients evaluated, 70 had already taken SP during pregnancy and 89 had never taken SP. Only the vagKgs allele was significantly overrepresented in the SP+ group (21.4% versus 3.4%; P < 0.001), whereas the ISgKAA mutant, widely distributed in this area and known to be less susceptible to SP, tended to be less abundant in this group (48.6% versus 64.0%; P = 0.0503). CONCLUSIONS: We found a strong overrepresentation of the CirnI/vagKgs haplotype in the IPTp-SP pregnant group, suggesting a high level of resistance of this mutant to SP. This could compromise not only the effectiveness of IPTp-SP but also the seasonal malaria chemoprevention of young children, now widely implemented.


Subject(s)
Antimalarials , Malaria, Falciparum , Pyrimethamine , Sulfadoxine , Child , Child, Preschool , Female , Humans , Pregnancy , Antimalarials/pharmacology , Antimalarials/therapeutic use , Cameroon , Chemoprevention/methods , Dihydropteroate Synthase/genetics , Drug Combinations , Drug Resistance/genetics , Malaria, Falciparum/drug therapy , Mutation , Plasmodium falciparum/genetics , Pregnant Women , Pyrimethamine/pharmacology , Pyrimethamine/therapeutic use , Sulfadoxine/pharmacology , Sulfadoxine/therapeutic use
4.
Microbiol Spectr ; 9(2): e0085221, 2021 10 31.
Article in English | MEDLINE | ID: mdl-34668767

ABSTRACT

The emergence of resistance to antimalarials has prompted the steady switch to novel therapies for decades. Withdrawal of antimalarials, such as chloroquine in sub-Saharan Africa in the late 1990s, led to rapid declines in the prevalence of resistance markers after a few years, raising the possibility of reintroducing them for malaria treatment. Here, we provide evidence that the mosquito vector plays a crucial role in maintaining parasite genetic diversity. We followed the transmission dynamics of Plasmodium falciparum parasites through its vector in natural infections from gametocytes contained in the blood of asymptomatic volunteers until sporozoites subsequently developed in the mosquito salivary glands. We did not find any selection of the mutant or wild-type pfcrt 76 allele during development in the Anopheles mosquito vector. However, microsatellite genotyping indicated that minority genotypes were favored during transmission through the mosquito. The analysis of changes in the proportions of mutant and wild-type pfcrt 76 alleles showed that, regardless of the genotype, the less-represented allele in the gametocyte population was more abundant in mosquito salivary glands, indicating a selective advantage of the minority allele in the vector. Selection of minority genotypes in the vector would explain the persistence of drug-resistant alleles in the absence of drug pressure in areas with high malaria endemicity and high genetic diversity. Our results may have important epidemiological implications, as they predict the rapid re-emergence and spread of resistant genotypes if antimalarials that had previously selected resistant parasites are reintroduced for malaria prevention or treatment. IMPORTANCE Drug selection pressure in malaria patients is the cause of the emergence of resistant parasites. Resistance imposes a fitness cost for parasites in untreated infections, so withdrawal of the drug leads to the return of susceptible parasites. Little is known about the role of the malaria vector in this phenomenon. In an experimental study conducted in Cameroon, an area of high malaria transmission, we showed that the vector did not favor the parasites based on sensitivity or resistance criteria, but it did favor the selection of minority clones. This finding shows that the vector increases the diversity of plasmodial populations and could play an important role in falciparum malaria epidemiology by maintaining resistant clones despite the absence of therapeutic pressure.


Subject(s)
Anopheles/parasitology , Drug Resistance/genetics , Malaria, Falciparum/epidemiology , Malaria, Falciparum/transmission , Mosquito Vectors/parasitology , Plasmodium falciparum/drug effects , Alleles , Animals , Antimalarials/therapeutic use , Cameroon/epidemiology , Chloroquine/therapeutic use , Genetic Variation/genetics , Genotype , Malaria, Falciparum/drug therapy , Membrane Transport Proteins/genetics , Microsatellite Repeats/genetics , Plasmodium falciparum/genetics , Protozoan Proteins/genetics , Salivary Glands/parasitology , Selection, Genetic/genetics
5.
J Fungi (Basel) ; 7(8)2021 Jul 31.
Article in English | MEDLINE | ID: mdl-34436164

ABSTRACT

The host immune response is critical in Pneumocystis pneumonia (PCP). Immunocompetent hosts can eliminate the fungus without symptoms, while immunodeficient hosts develop PCP with an unsuitable excessive inflammatory response leading to lung damage. From studies based on rodent models or clinical studies, this review aimed to better understand the pathophysiology of Pneumocystis infection by analysing the role of immune cells, mostly lymphocytes, according to the immune status of the infected host. Hence, this review first describes the immune physiological response in infected immunocompetent hosts that are able to eliminate the fungus. The objective of the second part is to identify the immune elements required for the control of the fungus, focusing on specific immune deficiencies. Finally, the third part concentrates on the effect of the different immune elements in immunocompromised subjects during PCP, to better understand which cells are detrimental, and which, on the contrary, are beneficial once the disease has started. This work highlights that the immune response associated with a favourable outcome of the infection may differ according to the immune status of the host. In the case of immunocompetency, a close communication between B cells and TCD4 within tertiary lymphocyte structures appears critical to activate M2 macrophages without much inflammation. Conversely, in the case of immunodeficiency, a pro-inflammatory response including Th1 CD4, cytotoxic CD8, NK cells, and IFNγ release seems beneficial for M1 macrophage activation, despite the impact of inflammation on lung tissue.

6.
J Fungi (Basel) ; 7(8)2021 Aug 11.
Article in English | MEDLINE | ID: mdl-34436191

ABSTRACT

The host lymphocyte response is decisive in Pneumocystis pneumonia (PCP) pathophysiology but little is known of the specific roles of lymphocyte subpopulations in this fungal infection. Peripheral NK, NKT, B, TCD4+ and TCD8+ subpopulations were compared by immunophenotyping between 20 patients diagnosed with PCP (PCP(+)] and 20 uninfected immunosuppressed patients (PCP(-)). Among PCP(+) subjects, the lymphocyte populations were also compared between surviving and deceased patients. Low B cell count (<40 cells/µL) was more frequent in PCP(+) than in PCP(-) patients (p = 0.03), while there was no difference for the TCD4 count. Among the PCP(+) group, the 7 deceased patients had lower Th1 (p = 0.02) and Tc1 (p = 0.03) populations, higher Th2 response (p = 0.03), higher effector TCD8 (p < 0.01), lower central memory TCD8 (p = 0.04) and reduced NK cells (p = 0.02) compared with the 13 survivors. Th1/Th2 ratio < 17, CD8 Tc1 < 44%, effector TCD8 < 25%, central memory TCD8 < 4%, NK cells < 50 cells/µL and total lymphocytes < 0.75 G/L were associated with a higher risk of mortality (p = 0.003, p = 0.007, p = 0.0007, p = 0.004, p = 0.02 and p = 0.019, respectively). The traditional analysis of TCD4 and TCD8 populations may be insufficient in the context of PCP. It could be completed by using B cells to predict the risk of PCP, and by using lymphocyte subpopulations or total lymphocyte count, which are easy to obtain in all health care facilities, to evaluate PCP prognosis.

7.
J Antimicrob Chemother ; 76(11): 3037-3044, 2021 10 11.
Article in English | MEDLINE | ID: mdl-34453535

ABSTRACT

BACKGROUND: Dihydroartemisinin/piperaquine is increasingly used for the treatment of uncomplicated Plasmodium falciparum malaria in Africa. The efficacy of this combination in Cameroon is poorly documented, while resistance to dihydroartemisinin/piperaquine readily spreads in Southeast Asia. OBJECTIVES: This study evaluated the clinical efficacy of dihydroartemisinin/piperaquine in Cameroon, as well as the molecular profile and phenotypic susceptibility of collected isolates to dihydroartemisinin and piperaquine. PATIENTS AND METHODS: Dihydroartemisinin/piperaquine efficacy in 42 days was followed-up for 138 patients presenting non-complicated falciparum malaria. Piperaquine concentration was determined at day 7 for 124 patients. kelch13 gene polymorphisms (n = 150) and plasmepsin2 gene amplification (n = 148) were determined as molecular markers of resistance to dihydroartemisinin and piperaquine, respectively. Parasite susceptibility to dihydroartemisinin and piperaquine was determined using validated in vitro survival assays. RESULTS: The efficacy of dihydroartemisinin/piperaquine treatment was 100% after PCR correction. The reinfections were not associated with a variation of piperaquine concentration at day 7. Ninety-six percent (144/150) of the samples presented a WT allele of the kelch13 gene. Two percent (3/150) presented the non-synonymous mutation A578S, which is not associated with resistance to dihydroartemisinin. No duplication of the plasmepsin2 gene was observed (0/148). All the samples tested in vitro by survival assays (n = 87) were susceptible to dihydroartemisinin and piperaquine. CONCLUSIONS: Dihydroartemisinin/piperaquine has demonstrated excellent therapeutic efficacy with no evidence of emerging artemisinin or piperaquine resistance in Yaoundé, Cameroon. This observation suggests that dihydroartemisinin/piperaquine could be a sustainable therapeutic solution for P. falciparum malaria if implemented in areas previously free of artemisinin- and piperaquine-resistant parasites, unlike Southeast Asia.


Subject(s)
Antimalarials , Artemisinins , Malaria, Falciparum , Malaria , Quinolines , Antimalarials/therapeutic use , Artemisinins/therapeutic use , Cameroon , Humans , Malaria/drug therapy , Malaria, Falciparum/drug therapy , Plasmodium falciparum/genetics , Quinolines/therapeutic use
8.
Emerg Microbes Infect ; 9(1): 1984-1987, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32869688

ABSTRACT

Following the diagnosis of a falciparum malaria case imported from Djibouti and not detected by a pfHRP2-based rapid diagnostic test (RDT), we investigated the prevalence of the pfhrp2/pfhrp3-deleted parasites in Djibouti using 378 blood samples collected between January and May 2019, from Djiboutian patients with suspected malaria. Malaria diagnosis by quantitative PCR confirmed the presence of Plasmodium falciparum for 20.9% (79/378) samples while RDTs did not detect HRP2 antigen in 83.5% (66/79) of these samples. Quantitative PCRs targeting the pfhrp2/pfhrp3 genes confirmed the absence of both genes for 86.5% of P. falciparum strains. The very large number (86.5%) of falciparum parasites lacking the pfhrp2/pfhrp3 genes observed in this study, now justifies the use of non-HRP2 alternative RDTs in Djibouti. In this area and in most countries where HRP2-based RDTs constitute the main arsenal for falciparum malaria diagnosis, it is important to implement a systematic surveillance and to inform biologists and clinicians about the risk of malaria misdiagnosis. Further investigations are needed to better understand the mechanism of selection and diffusion of the pfhrp2/pfhrp3-deleted parasites.


Subject(s)
Antigens, Protozoan/genetics , Gene Deletion , Malaria, Falciparum/diagnosis , Plasmodium falciparum/genetics , Protozoan Proteins/genetics , Diagnostic Errors , Diagnostic Tests, Routine , Djibouti , Humans , Plasmodium falciparum/classification , Population Surveillance , Prevalence , Sensitivity and Specificity
9.
J Antimicrob Chemother ; 75(10): 2826-2834, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32653910

ABSTRACT

BACKGROUND: Quiescence is an unconventional mechanism of Plasmodium survival, mediating artemisinin resistance. This phenomenon increases the risk of clinical failures following artemisinin-based combination therapies (ACTs) by slowing parasite clearance and allowing the selection of parasites resistant to partner drugs. OBJECTIVES: To thwart this multiresistance, the quiescent state of artemisinin-resistant parasites must be taken into consideration from the very early stages of the drug discovery process. METHODS: We designed a novel phenotypic assay we have named the quiescent-stage survival assay (QSA) to assess the antiplasmodial activity of drugs on quiescent parasites. This assay was first validated on quiescent forms from different artemisinin-resistant parasite lines (laboratory strain and field isolates), using two reference drugs with different mechanisms of action: chloroquine and atovaquone. Furthermore, the efficacies of different partner drugs of artemisinins used in ACTs were investigated against both laboratory strains and field isolates from Cambodia. RESULTS: Our results highlight that because of the mechanism of quiescence and the respective pharmacological targets of drugs, drug efficacies on artemisinin-resistant parasites may be different between quiescent parasites and their proliferating forms. CONCLUSIONS: These data confirm the high relevance of adding the chemosensitivity evaluation of quiescent parasites by the specific in vitro QSA to the antiplasmodial drug development process in the current worrisome context of artemisinin resistance.


Subject(s)
Antimalarials , Artemisinins , Malaria, Falciparum , Parasites , Animals , Antimalarials/pharmacology , Antimalarials/therapeutic use , Artemisinins/pharmacology , Artemisinins/therapeutic use , Cambodia , Drug Resistance , Malaria, Falciparum/drug therapy , Parasites/drug effects , Plasmodium falciparum/drug effects , Protozoan Proteins
10.
Am J Trop Med Hyg ; 98(4): 1123-1131, 2018 04.
Article in English | MEDLINE | ID: mdl-29436338

ABSTRACT

We assessed the ex vivo/in vitro sensitivity of 54 Malian Plasmodium falciparum isolates to artemisinin for the monitoring of drug resistance in this area. The artemisinin sensitivity of parasites was evaluated using 1) the ex vivo and in vitro parasite recrudescence detection after treatment of the ring stage with 1-200 nM artemisinin for 48 hours and 2) the in vitro parasite recrudescence kinetics assay over 7 days after 6-hour treatment of the ring stage with 700 nM dihydroartemisinin (DHA). In addition, as recommended by the World Health Organization for artemisinin resistance characterization, the ring-stage survival assay (RSA0-3 h) was performed and the parasite isolates were sequenced at the kelch 13 propeller locus. No clinical and molecular evidence of artemisinin resistance was observed. However, these isolates present different phenotypic profiles in response to artemisinin treatments. Despite all RSA0-3 h values less than 1.5%, six out of 46 (13.0%) isolates tested ex vivo and four out of six (66.7%) isolates tested in vitro were able to multiply after 48-hour treatments with 100 nM artemisinin. Moreover, five out of eight isolates tested showed faster parasite recovery after DHA treatment in kinetic assays. The presence of such phenotypes needs to be taken into account in the assessment of the efficacy of artemisinins in Mali. The assays presented here appear as valuable tools for the monitoring of artemisinin sensitivity in the field and thus could help to evaluate the risk of emergence of artemisinin resistance in Africa.


Subject(s)
Antimalarials/pharmacology , Artemisinins/pharmacology , Plasmodium falciparum/drug effects , Drug Resistance , Genotype , Humans , Phenotype , Plasmodium falciparum/genetics
11.
PLoS One ; 12(7): e0181300, 2017.
Article in English | MEDLINE | ID: mdl-28742109

ABSTRACT

Cerebral malaria (CM) is the most severe manifestation of human malaria yet is still poorly understood. Mouse models have been developed to address the subject. However, their relevance to mimic human pathogenesis is largely debated. Here we study an alternative cerebral malaria model with an experimental Plasmodium berghei Keyberg 173 (K173) infection in Sprague Dawley rats. As in Human, not all infected subjects showed cerebral malaria, with 45% of the rats exhibiting Experimental Cerebral Malaria (ECM) symptoms while the majority (55%) of the remaining rats developed severe anemia and hyperparasitemia (NoECM). These results allow, within the same population, a comparison of the noxious effects of the infection between ECM and severe malaria without ECM. Among the ECM rats, 77.8% died between day 5 and day 12 post-infection, while the remaining rats were spontaneously cured of neurological signs within 24-48 hours. The clinical ECM signs observed were paresis quickly evolving to limb paralysis, global paralysis associated with respiratory distress, and coma. The red blood cell (RBC) count remained normal but a drastic decrease of platelet count and an increase of white blood cell numbers were noted. ECM rats also showed a decrease of glucose and total CO2 levels and an increase of creatinine levels compared to control rats or rats with no ECM. Assessment of the blood-brain barrier revealed loss of integrity, and interestingly histopathological analysis highlighted cyto-adherence and sequestration of infected RBCs in brain vessels from ECM rats only. Overall, this ECM rat model showed numerous clinical and histopathological features similar to Human CM and appears to be a promising model to achieve further understanding the CM pathophysiology in Humans and to evaluate the activity of specific antimalarial drugs in avoiding/limiting cerebral damages from malaria.


Subject(s)
Brain/pathology , Brain/parasitology , Malaria, Cerebral/pathology , Malaria, Cerebral/parasitology , Malaria/complications , Plasmodium berghei/physiology , Anemia/complications , Animals , Brain/blood supply , Capillary Permeability , Cerebral Hemorrhage/etiology , Cerebral Hemorrhage/pathology , Cytokines/analysis , Disease Models, Animal , Erythrocytes/parasitology , Malaria/blood , Malaria/parasitology , Malaria/pathology , Malaria, Cerebral/blood , Malaria, Cerebral/complications , Male , Rats, Sprague-Dawley
12.
Malar J ; 15(1): 572, 2016 11 26.
Article in English | MEDLINE | ID: mdl-27887614

ABSTRACT

BACKGROUND: The spread of Plasmodium falciparum resistance to artemisinin derivatives in Southeast Asia is a major source of concern and the emergence of resistance in Africa would have dramatic consequences, by increasing malaria mortality and morbidity. It is therefore urgent to implement regular monitoring in sentinel sites in sub-Saharan Africa using robust and easy-to-implement tools. The prevalence of k13-propeller mutations and the phenotypic profiles are poorly known in sub-Saharan Africa. Here, the k13-propeller polymorphism was compared to both ex vivo susceptibility to DHA and early parasitological and clinical responses to artemisinin combination therapy (ACT). METHODS: Plasmodium falciparum isolates were collected in 2015 in Yaoundé (Cameroon) from patients treated with dihydroartemisinin-piperaquine combination. Samples were analysed for their susceptibility to artemisinin using the k13-propeller sequencing, the ex vivo ring-stage survival assay, the in vivo parasite positive rate and the clinical statute at day 2. RESULTS: None of the collected isolates revealed the presence of resistance mutations in the k13-propeller sequence. The median ring-stage survival rate for all the 64 interpretable isolates after a 6-hour pulse of 700 nM dihydroartemisinin was low, 0.49% (IQR: 0-1.3). Total parasite clearance was observed for 87.5% of patients and the remaining parasitaemic isolates (12.5%) showed a high reduction of parasite load, ranging from 97.5 to 99.9%. Clinical symptoms disappeared in 92.8% of cases. CONCLUSION: This study demonstrated the absence of k13-resistant genotypes in P. falciparum isolates from Cameroon. Only synonymous mutations were found with a low prevalence (4.3%). A good association between k13 genotypes and the ex vivo ring-stage survival assay or parasitological and clinical data was obtained. These results give a baseline for the long-term monitoring of artemisinin derivative efficacy in Africa.


Subject(s)
Antimalarials/pharmacology , Artemisinins/pharmacology , Drug Resistance , Malaria, Falciparum/parasitology , Plasmodium falciparum/drug effects , Polymorphism, Genetic , Protozoan Proteins/genetics , Adolescent , Adult , Antimalarials/therapeutic use , Artemisinins/therapeutic use , Cameroon , Child , Female , Humans , Malaria, Falciparum/drug therapy , Male , Middle Aged , Parasitic Sensitivity Tests , Plasmodium falciparum/genetics , Plasmodium falciparum/isolation & purification , Point Mutation , Prospective Studies , Quinolines/therapeutic use , Treatment Outcome , Volunteers , Young Adult
13.
N Engl J Med ; 374(25): 2453-64, 2016 06 23.
Article in English | MEDLINE | ID: mdl-27332904

ABSTRACT

BACKGROUND: Recent gains in reducing the global burden of malaria are threatened by the emergence of Plasmodium falciparum resistance to artemisinins. The discovery that mutations in portions of a P. falciparum gene encoding kelch (K13)-propeller domains are the major determinant of resistance has provided opportunities for monitoring such resistance on a global scale. METHODS: We analyzed the K13-propeller sequence polymorphism in 14,037 samples collected in 59 countries in which malaria is endemic. Most of the samples (84.5%) were obtained from patients who were treated at sentinel sites used for nationwide surveillance of antimalarial resistance. We evaluated the emergence and dissemination of mutations by haplotyping neighboring loci. RESULTS: We identified 108 nonsynonymous K13 mutations, which showed marked geographic disparity in their frequency and distribution. In Asia, 36.5% of the K13 mutations were distributed within two areas--one in Cambodia, Vietnam, and Laos and the other in western Thailand, Myanmar, and China--with no overlap. In Africa, we observed a broad array of rare nonsynonymous mutations that were not associated with delayed parasite clearance. The gene-edited Dd2 transgenic line with the A578S mutation, which expresses the most frequently observed African allele, was found to be susceptible to artemisinin in vitro on a ring-stage survival assay. CONCLUSIONS: No evidence of artemisinin resistance was found outside Southeast Asia and China, where resistance-associated K13 mutations were confined. The common African A578S allele was not associated with clinical or in vitro resistance to artemisinin, and many African mutations appear to be neutral. (Funded by Institut Pasteur Paris and others.).


Subject(s)
Artemisinins/pharmacology , Drug Resistance/genetics , Lactones/pharmacology , Mutation , Plasmodium falciparum/genetics , Polymorphism, Genetic , Protozoan Proteins/genetics , Algorithms , Artemisinins/therapeutic use , Asia, Southeastern , China , Endemic Diseases , Genotype , Humans , Lactones/therapeutic use , Malaria, Falciparum/drug therapy , Malaria, Falciparum/parasitology , Plasmodium falciparum/drug effects , Sequence Analysis, DNA
14.
Emerg Infect Dis ; 21(10): 1733-41, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26401601

ABSTRACT

Plasmodium falciparum resistance to artemisinin derivatives in Southeast Asia threatens global malaria control strategies. Whether delayed parasite clearance, which exposes larger parasite numbers to artemisinins for longer times, selects higher-grade resistance remains unexplored. We investigated whether long-lasting artemisinin pressure selects a novel multidrug-tolerance profile. Although 50% inhibitory concentrations for 10 antimalarial drugs tested were unchanged, drug-tolerant parasites showed higher recrudescence rates for endoperoxides, quinolones, and an antifolate, including partner drugs of recommended combination therapies, but remained susceptible to atovaquone. Moreover, the age range of intraerythrocytic stages able to resist artemisinin was extended to older ring forms and trophozoites. Multidrug tolerance results from drug-induced quiescence, which enables parasites to survive exposure to unrelated antimalarial drugs that inhibit a variety of metabolic pathways. This novel resistance pattern should be urgently monitored in the field because this pattern is not detected by current assays and represents a major threat to antimalarial drug policy.


Subject(s)
Antimalarials/therapeutic use , Artemisinins/therapeutic use , Drug Tolerance/immunology , Malaria, Falciparum/parasitology , Malaria/drug therapy , Plasmodium falciparum/drug effects , Asia, Southeastern , Humans , Malaria, Falciparum/drug therapy
15.
J Antimicrob Chemother ; 70(9): 2566-71, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26080363

ABSTRACT

OBJECTIVES: To determine, 6 years after the adoption of intermittent preventive treatment of pregnant women with sulfadoxine/pyrimethamine (IPTp-SP) in Cameroon, (i) the polymorphism and prevalence of Plasmodium falciparum dihydrofolate reductase (pfdhfr) and dihydropteroate synthase (pfdhps) gene mutations associated with sulfadoxine/pyrimethamine resistance and (ii) the consequences of sulfadoxine/pyrimethamine use in the selection of pfdhfr/pfdhps alleles. METHODS: pfdhfr and pfdhps genes from P. falciparum isolates collected in Yaoundé (Cameroon) from pregnant women with symptomatic malaria before taking IPTp-SP [SP- group (control) (n = 51)] or afterwards [SP+ group (n = 49)] were sequenced. RESULTS: The pfdhfr N51I, C59R, S108N triple mutant had a prevalence close to 100% (96/100) and no mutations at codons 50 and 164 were detected in either of the groups. The most frequent pfdhps mutation was A437G with a prevalence of 76.5% (39/51) in the SP- group, which was significantly higher in pregnant women who took sulfadoxine/pyrimethamine [95.9% (47/49)] (P = 0.012). Our study confirmed the presence of the pfdhps K540E mutation in Cameroon, but it remained rare. The prevalence of pfdhps A581G and A613S mutations had increased [5.9% (3/51) and 11.8% (6/51) in the control group, respectively] since the last studies in 2005. Surprisingly, the new pfdhps I431V mutation was detected, at a prevalence of 9.8% (5/51), and was found to be associated with other pfdhfr/pfdhps alleles to form an octuple N51I, C59R, S108N/I431V, S436A, A437G, A581G, A613S mutant. CONCLUSIONS: Significant changes were found in pfdhps polymorphism. In particular, we observed several parasites carrying eight mutations in pfdhfr/pfdhps genes, which are very susceptible to having a high level of resistance to sulfadoxine/pyrimethamine.


Subject(s)
Antimalarials/pharmacology , Drug Resistance , Gene Frequency , Malaria, Falciparum/parasitology , Plasmodium falciparum/drug effects , Pregnancy Complications, Infectious/parasitology , Pyrimethamine/pharmacology , Sulfadoxine/pharmacology , Adult , Cameroon/epidemiology , Dihydropteroate Synthase/genetics , Drug Combinations , Female , Humans , Malaria, Falciparum/epidemiology , Mutation , Plasmodium falciparum/isolation & purification , Polymorphism, Genetic , Pregnancy , Pregnancy Complications, Infectious/epidemiology , Prevalence , Sequence Analysis, DNA , Tetrahydrofolate Dehydrogenase/genetics , Young Adult
16.
Parasitology ; 142(4): 543-8, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25374302

ABSTRACT

Piroplasms, including Babesia, Cytauxzoon and Theileria species, frequently infect domestic and wild mammals. At present, there is no information on the occurrence and molecular identity of these tick-borne blood parasites in the meerkat, one of South Africa's most endearing wildlife celebrities. Meerkats live in territorial groups, which may occur on ranchland in close proximity to humans, pets and livestock. Blood collected from 46 healthy meerkats living in the South-African Kalahari desert was screened by microscopy and molecular methods, using PCR and DNA sequencing of 18S rRNA and ITS1 genes. We found that meerkats were infected by 2 species: one species related to Babesia sp. and one species related to Cytauxzoon sp. Ninety one percent of the meerkats were infected by the Cytauxzoon and/or the Babesia species. Co-infection occurred in 46% of meerkats. The pathogenicity and vectors of these two piroplasm species remains to be determined.


Subject(s)
Carnivora/parasitology , Piroplasmida/genetics , Protozoan Infections, Animal/parasitology , Animals , Animals, Wild , Babesia/classification , Babesia/genetics , Babesiosis/parasitology , DNA, Protozoan/chemistry , DNA, Protozoan/genetics , DNA, Protozoan/isolation & purification , DNA, Ribosomal Spacer/chemistry , Phylogeny , Piroplasmida/classification , RNA, Ribosomal, 18S/genetics , South Africa
17.
Int J Med Microbiol ; 304(8): 1062-5, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25201327

ABSTRACT

In South America, disseminated histoplasmosis due to Histoplasma capsulatum var. capsulatum (H. capsulatum), is a severe and frequent opportunistic infection in AIDS patients. In areas outside the USA where specific-Histoplasma antigen detection is not available, the diagnosis is difficult. With the galactomannan antigen (GM) detection, a test commonly used for invasive aspergillosis diagnosis, there is a cross-reactivity with H. capsulatum that can be helpful for the diagnosis of histoplasmosis. The aim of this study was to evaluate the GM detection for the diagnosis of disseminated histoplasmosis in AIDS patients. The performance of the GM detection was evaluated with serum collected in French Guiana where H. capsulatum is highly endemic. Sera from AIDS patients with disseminated histoplasmosis occurring from 2002 to 2009 and from control HIV-positive patients without histoplasmosis were tested with the GM detection and Histoplasma-specific antibody detection (IEP). In 39 AIDS patients with proven disseminated histoplasmosis, the sensitivity of the Histoplasma IEP was only 35.9% and was linked to the TCD4+ lymphocyte level. For the GM detection, the sensitivity (Se) was 76.9% and specificity (Sp) was 100% with the recommended threshold for aspergillosis diagnosis (0.5). The test was more efficient with a threshold of 0.4 (Se: 0.82 [95% CI: 0.66-0.92], Sp: 1.00 [95% CI: 0.86-1.00], LR+: >10, LR-: 0.18). This study confirms that the GM detection can be a surrogate marker for the diagnosis of disseminated histoplasmosis in AIDS patients in endemic areas where Histoplasma EIA is not available.


Subject(s)
AIDS-Related Opportunistic Infections/diagnosis , AIDS-Related Opportunistic Infections/drug therapy , Acquired Immunodeficiency Syndrome/complications , Histoplasma/isolation & purification , Histoplasmosis/diagnosis , Histoplasmosis/drug therapy , Mannans/blood , AIDS-Related Opportunistic Infections/microbiology , Adult , Antibodies, Fungal/blood , Cohort Studies , Female , French Guiana , Galactose/analogs & derivatives , Histoplasmosis/microbiology , Humans , Male , Middle Aged , Sensitivity and Specificity , South America
18.
Nature ; 505(7481): 50-5, 2014 Jan 02.
Article in English | MEDLINE | ID: mdl-24352242

ABSTRACT

Plasmodium falciparum resistance to artemisinin derivatives in southeast Asia threatens malaria control and elimination activities worldwide. To monitor the spread of artemisinin resistance, a molecular marker is urgently needed. Here, using whole-genome sequencing of an artemisinin-resistant parasite line from Africa and clinical parasite isolates from Cambodia, we associate mutations in the PF3D7_1343700 kelch propeller domain ('K13-propeller') with artemisinin resistance in vitro and in vivo. Mutant K13-propeller alleles cluster in Cambodian provinces where resistance is prevalent, and the increasing frequency of a dominant mutant K13-propeller allele correlates with the recent spread of resistance in western Cambodia. Strong correlations between the presence of a mutant allele, in vitro parasite survival rates and in vivo parasite clearance rates indicate that K13-propeller mutations are important determinants of artemisinin resistance. K13-propeller polymorphism constitutes a useful molecular marker for large-scale surveillance efforts to contain artemisinin resistance in the Greater Mekong Subregion and prevent its global spread.


Subject(s)
Antimalarials/pharmacology , Artemisinins/pharmacology , Drug Resistance/genetics , Malaria, Falciparum/parasitology , Plasmodium falciparum/drug effects , Plasmodium falciparum/genetics , Protozoan Proteins/genetics , Alleles , Animals , Blood Cells/parasitology , Cambodia , Drug Resistance/drug effects , Genetic Markers/genetics , Half-Life , Humans , Malaria, Falciparum/drug therapy , Mutation/genetics , Parasitic Sensitivity Tests , Plasmodium falciparum/growth & development , Plasmodium falciparum/isolation & purification , Polymorphism, Single Nucleotide/genetics , Protein Structure, Tertiary/genetics , Protozoan Proteins/chemistry , Time Factors
19.
Proc Natl Acad Sci U S A ; 110(20): 8123-8, 2013 May 14.
Article in English | MEDLINE | ID: mdl-23637341

ABSTRACT

Plasmodium vivax is considered to be absent from Central and West Africa because of the protective effect of Duffy negativity. However, there are reports of persons returning from these areas infected with this parasite and observations suggesting the existence of transmission. Among the possible explanations for this apparent paradox, the existence of a zoonotic reservoir has been proposed. May great apes be this reservoir? We analyze the mitochondrial and nuclear genetic diversity of P. vivax parasites isolated from great apes in Africa and compare it to parasites isolated from travelers returning from these regions of Africa, as well as to human isolates distributed all over the world. We show that the P. vivax sequences from parasites of great apes form a clade genetically distinct from the parasites circulating in humans. We show that this clade's parasites can be infectious to humans by describing the case of a traveler returning from the Central African Republic infected with one of them. The relationship between this P. vivax clade in great apes and the human isolates is discussed.


Subject(s)
Evolution, Molecular , Host Specificity , Malaria/parasitology , Plasmodium vivax/genetics , Adult , Animals , Central African Republic , Culicidae/parasitology , DNA, Mitochondrial/genetics , Genetic Variation , Genome , Haplotypes , Hominidae/parasitology , Humans , Male , Molecular Sequence Data , Phylogeny , Polymerase Chain Reaction , Time Factors
20.
Med Mycol ; 51(6): 652-6, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23373445

ABSTRACT

Candida spp. are an important cause of nosocomial bloodstream infections. Currently, complete identification of yeasts with conventional methods takes several days. We report here the first evaluation of an extraction method associated with the Vitek MS matrix-assisted laser desorption ionization time of flight mass spectrometry for direct identification of Candida species from positive blood cultures. We evaluated this protocol with blood cultures that were inoculated with reference and routine isolates (eight reference strains, 30 patients isolates and six mixed cultures containing two strains of different Candida species), or from patients with candidemia (28 isolates). This method performed extremely well (97% correct identification) with blood cultures of single Candida spp. and significantly reduced the time of diagnosis. Nevertheless, subculture remains indispensable to test fungal resistance and to detect mixed infections.


Subject(s)
Candida/chemistry , Candida/classification , Candidemia/diagnosis , Microbiological Techniques/methods , Mycology/methods , Specimen Handling/methods , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Blood/microbiology , Candida/isolation & purification , Humans , Sensitivity and Specificity , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...