Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
2.
Part Fibre Toxicol ; 20(1): 45, 2023 Nov 23.
Article in English | MEDLINE | ID: mdl-37996842

ABSTRACT

BACKGROUND: Perinatal exposure to titanium dioxide (TiO2), as a foodborne particle, may influence the intestinal barrier function and the susceptibility to develop inflammatory bowel disease (IBD) later in life. Here, we investigate the impact of perinatal foodborne TiO2 exposure on the intestinal mucosal function and the susceptibility to develop IBD-associated colitis. Pregnant and lactating mother mice were exposed to TiO2 until pups weaning and the gut microbiota and intestinal barrier function of their offspring was assessed at day 30 post-birth (weaning) and at adult age (50 days). Epigenetic marks was studied by DNA methylation profile measuring the level of 5-methyl-2'-deoxycytosine (5-Me-dC) in DNA from colic epithelial cells. The susceptibility to develop IBD has been monitored using dextran-sulfate sodium (DSS)-induced colitis model. Germ-free mice were used to define whether microbial transfer influence the mucosal homeostasis and subsequent exacerbation of DSS-induced colitis. RESULTS: In pregnant and lactating mice, foodborne TiO2 was able to translocate across the host barriers including gut, placenta and mammary gland to reach embryos and pups, respectively. This passage modified the chemical element composition of foetus, and spleen and liver of mothers and their offspring. We showed that perinatal exposure to TiO2 early in life alters the gut microbiota composition, increases the intestinal epithelial permeability and enhances the colonic cytokines and myosin light chain kinase expression. Moreover, perinatal exposure to TiO2 also modifies the abilities of intestinal stem cells to survive, grow and generate a functional epithelium. Maternal TiO2 exposure increases the susceptibility of offspring mice to develop severe DSS-induced colitis later in life. Finally, transfer of TiO2-induced microbiota dysbiosis to pregnant germ-free mice affects the homeostasis of the intestinal mucosal barrier early in life and confers an increased susceptibility to develop colitis in adult offspring. CONCLUSIONS: Our findings indicate that foodborne TiO2 consumption during the perinatal period has negative long-lasting consequences on the development of the intestinal mucosal barrier toward higher colitis susceptibility. This demonstrates to which extent environmental factors influence the microbial-host interplay and impact the long-term mucosal homeostasis.


Subject(s)
Colitis , Inflammatory Bowel Diseases , Pregnancy , Female , Animals , Mice , Dysbiosis/chemically induced , Lactation , Colitis/chemically induced , Colitis/genetics , Colitis/metabolism , Inflammatory Bowel Diseases/metabolism , Mice, Inbred C57BL , Disease Models, Animal
4.
Front Microbiol ; 13: 906238, 2022.
Article in English | MEDLINE | ID: mdl-35733975

ABSTRACT

Salmonella enterica serovars are invasive gram-negative bacteria, causing a wide range of diseases from gastroenteritis to typhoid fever, representing a public health threat around the world. Salmonella gains access to the intestinal lumen after oral ingestion of contaminated food or water. The crucial initial step to establish infection is the interaction with the intestinal epithelium. Human-adapted serovars such as S. Typhi or S. Paratyphi disseminate to systemic organs and induce life-threatening disease known as typhoid fever, whereas broad-host serovars such as S. Typhimurium usually are limited to the intestine and responsible for gastroenteritis in humans. To overcome intestinal epithelial barrier, Salmonella developed mechanisms to induce cellular invasion, intracellular replication and to face host defence mechanisms. Depending on the serovar and the respective host organism, disease symptoms differ and are linked to the ability of the bacteria to manipulate the epithelial barrier for its own profit and cross the intestinal epithelium. This review will focus on S. Typhimurium (STm). To better understand STm pathogenesis, it is crucial to characterize the crosstalk between STm and the intestinal epithelium and decipher the mechanisms and epithelial cell types involved. Thus, the purpose of this review is to summarize our current knowledge on the molecular dialogue between STm and the various cell types constituting the intestinal epithelium with a focus on the mechanisms developed by STm to cross the intestinal epithelium and access to subepithelial or systemic sites and survive host defense mechanisms.

5.
Cell Mol Life Sci ; 78(24): 8157-8164, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34731253

ABSTRACT

This study aims to remind that Intestinal Passage (IP) measurement is a complex task that cannot be achieved by a unique measure of an orally given exogenous marker in blood or urine. This will be illustrated in the case of NOD mice. Indeed, various methods have been proposed to measure IP. Among them ex vivo measurement in Ussing chambers of luminal to serosal fluxes of exogenous markers and in vivo measurement of exogenous markers in blood or urine after oral gavage are the more commonly used. Even though they are commonly used indifferently, they do not give the same information and can provide contradictory results. Published data showed that diabetic status in female Non Obese Diabetic (NOD) mice increased FD4 concentration in blood after gavage but did not modify FD4 fluxes in Ussing chamber. We observed the same results in our experimental conditions and tracked FD4 concentrations in blood over a kinetic study (Area Under the Curve-AUC). In vivo measurements are a dynamic process and address not only absorption (IP and intestinal surface) but also distribution, metabolism and excretion (ADME). Diabetic status in NOD mice was associated with an increase of intestinal length (absorptive surface), itself positively correlated with AUC of FD4 in blood. We concluded that increased intestinal length induced by diabetic status will extend the absorptive surface and increase FD4 concentration in plasma (in vivo measurement) despite no modification on IP of FD4 (ex vivo measurement). In addition, this study characterized intestinal function in diabetic NOD mice. Diabetic status in NOD female mice increases intestinal length and decreases paracellular IP (FSS) without affecting transcellular IP (HRP, FD4). Histological studies of small and large intestine did not show any modification of intestinal circumference nor villi and crypt size. Finally, diabetic status was not associated with intestinal inflammation (ELISA).


Subject(s)
Cell Membrane Permeability , Dextrans/metabolism , Diabetes Mellitus, Experimental/metabolism , Epithelial Cells/metabolism , Fluorescein-5-isothiocyanate/analogs & derivatives , Intestinal Absorption , Intestinal Mucosa/metabolism , Animals , Biological Transport , Diabetes Mellitus, Experimental/pathology , Female , Fluorescein-5-isothiocyanate/metabolism , Mice , Mice, Inbred NOD
6.
Mol Nutr Food Res ; 65(23): e2100191, 2021 12.
Article in English | MEDLINE | ID: mdl-34626057

ABSTRACT

INTRODUCTION: The food contamination by mycotoxins is of increasing public health concerns. Deoxynivalenol (DON), a mycotoxin contaminating cereals, has been associated with the exacerbation of inflammatory bowel diseases (IBD), thereby raising the question of its role in the development of IBD. Moreover, the effect of DON on the colon is poorly described. METHODS AND RESULTS: Wistar rats exposed (1-4 weeks) to low doses of DON (2 or 9 mg kg-1 feed) show microscopic alterations of colonic tissue (dilated lymphatic vessels, luminal debris, and cubic and flattened enterocytes). Ingestion of DON also alters colonic functions by increasing paracellular permeability while reducing the expression of the tight junction proteins and increased apoptosis in colonic tissue. Pro-apoptotic factors Bax/Bak, cytochrome C, and caspase 9 are upregulated, whereas expression of anti-apoptotic protein Bcl2 tends to decrease for the mitochondrial pathway. An increased expression of FasR and caspase-8 is observed for the extrinsic pathway. An increase in the pro-inflammatory markers TNFα, IL-17, and myeloperoxidase is also observed. CONCLUSION: These results indicate that the dietary exposure to low levels of DON in food targets the colon inducing a health-threatening breakdown of the colonic barrier, highlighting oral exposure to DON as a potential risk factor in triggering IBD.


Subject(s)
Dietary Exposure , Intestinal Mucosa , Animals , Colon , Food Contamination , Intestinal Mucosa/metabolism , Rats , Rats, Wistar , Receptors, Death Domain , Trichothecenes
7.
Part Fibre Toxicol ; 18(1): 26, 2021 07 30.
Article in English | MEDLINE | ID: mdl-34330311

ABSTRACT

The gastrointestinal tract is a complex interface between the external environment and the immune system. Its ability to control uptake across the mucosa and to protect the body from damage of harmful substances from the lumen is defined as the intestinal barrier function (IBF). The IBF involves four elements: the intestinal microbiota, the mucus layer, the epithelium and the immune system. Its dysfunction is linked with human diseases including inflammatory, metabolic, infectious, autoimmune and neurologic disorders. Most of these diseases are complex and involve genetic, psychological and environmental factors. Over the past 10 years, many genetic polymorphisms predisposing to inflammatory bowel disease (IBD) have been identified. Yet, it is now clear that they are insufficient to explain the onset of these chronic diseases. Although it has been evidenced that some environmental factors such as cigarette smoking or carbohydrate intake are associated with IBD, other environmental factors also present potential health risks such as ingestion of food additives introduced in the human diet, including those composed of mineral particles, by altering the four elements of the intestinal barrier function. The aim of this review is to provide a critical opinion on the potential of TiO2 particles, especially when used as a food additive, to alter the four elements of the intestinal barrier function, and consequently to evaluate if this additive would likely play a role in the development and/or exacerbation of IBD.


Subject(s)
Colorectal Neoplasms , Inflammatory Bowel Diseases , Colorectal Neoplasms/chemically induced , Colorectal Neoplasms/genetics , Diet/adverse effects , Humans , Inflammatory Bowel Diseases/chemically induced , Inflammatory Bowel Diseases/genetics , Intestinal Mucosa , Titanium
8.
Biomolecules ; 11(5)2021 05 03.
Article in English | MEDLINE | ID: mdl-34063694

ABSTRACT

The global prevalence of obesity has been increasing in recent years and is now the major public health challenge worldwide. While the risks of developing metabolic disorders (MD) including obesity and type 2 diabetes (T2D) have been historically thought to be essentially driven by increased caloric intake and lack of exercise, this is insufficient to account for the observed changes in disease trends. Based on human epidemiological and pre-clinical experimental studies, this overview questioned the role of non-nutritional components as contributors to the epidemic of MD with a special emphasis on food contaminants and social stress. This overview examines the impact of early life adverse events (ELAE) focusing on exposures to food contaminants or social stress on weight gain and T2D occurrence in the offspring and explores potential mechanisms leading to MD in adulthood. Indeed, summing up data on both ELAE models in parallel allowed us to identify common patterns that appear worthwhile to study in MD etiology. This overview provides some evidence of a link between ELAE-induced intestinal barrier disruption, inflammation, epigenetic modifications, and the occurrence of MD. This overview sums up evidence that MD could have developmental origins and that ELAE are risk factors for MD at adulthood independently of nutritional status.


Subject(s)
Diabetes Mellitus, Type 2/etiology , Obesity/etiology , Stress, Psychological/complications , Adult , Adverse Childhood Experiences/psychology , Diabetes Mellitus, Type 2/psychology , Epigenesis, Genetic , Food Microbiology , Humans , Obesity/psychology
9.
Sci Rep ; 11(1): 1650, 2021 01 18.
Article in English | MEDLINE | ID: mdl-33462300

ABSTRACT

Bisphenol (BP)A is an endocrine disruptor (ED) widely used in thermal papers. Regulatory restrictions have been established to prevent risks for human health, leading to BPA substitution by structural analogues, like BPS and BPF. We previously demonstrated that oral perinatal exposure to BPA had long-term consequences on immune responses later in life. It appears now essential to enhance our understanding on immune impact of different routes of BP exposure. In this study, we aimed at comparing the impact of mother dermal exposure to BPs on offspring immune system at adulthood. Gravid mice were dermally exposed to BPA, BPS or BPF at 5 or 50 µg/kg of body weight (BW)/day (d) from gestation day 15 to weaning of pups at post-natal day (PND)21. In offspring, BPs dermal impregnation of mothers led to adverse effects on immune response at intestinal and systemic levels that was dependent on the BP, the dose and offspring sex. These findings provide, for the first time, results on long-term consequences of dermal perinatal BPs exposure on immune responses in offspring. This work warns that it is mandatory to consider immune markers, dose exposure as well as sex in risk assessment associated with new BPA's alternatives.


Subject(s)
Benzhydryl Compounds/toxicity , Endocrine Disruptors/toxicity , Maternal Exposure/adverse effects , Phenols/toxicity , Prenatal Exposure Delayed Effects/chemically induced , Prenatal Exposure Delayed Effects/immunology , Sulfones/toxicity , Animals , Dose-Response Relationship, Drug , Estrogens, Non-Steroidal/toxicity , Female , Immunity , Male , Mice , Mice, Inbred C3H , Pregnancy , Prenatal Exposure Delayed Effects/pathology , Sex Factors
10.
Curr Top Microbiol Immunol ; 430: 247-264, 2021.
Article in English | MEDLINE | ID: mdl-30259111

ABSTRACT

The intestine is a complex organ formed of different types of cell distributed in different layers of tissue. To minimize animal experiments, for decades, researchers have been trying to develop in vitro/ex vivo systems able to mimic the cellular diversity naturally found in the gut. Such models not only help our understanding of the gut physiology but also of intestinal toxicity. This review describes the different systems used to evaluate the effects of drugs/contaminants on intestinal functions and compares their advantages and limitations. The comparison showed that the organotypic model is the best available model to perform intestinal toxicity studies, including on human tissues.


Subject(s)
Intestines , Animals , Humans
11.
Food Chem Toxicol ; 146: 111773, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33011352

ABSTRACT

Bisphenol (BP) A, a known food contaminant, is a possible risk factor in the epidemic of non-communicable diseases (NCD) including food intolerance and inflammatory bowel diseases (IBD). Regulatory restrictions regarding BPA usage led to BPA removal and replacement by poorly described substitutes, like BPS or BPF (few data on occurrence in food and human samples and biological effect). Oral tolerance protocol to ovalbumin (OVA) in WT mice and Il10-/- mice prone to IBD were used respectively to address immune responses towards food and microbial luminal antigens following BP oral exposure. Both mice models were orally exposed for five weeks to BPA, BPS or BPF at 0.5, 5 and 50 µg/kg of body weight (bw)/day (d). Oral exposure to BPs at low doses (0.5 and 5 µg/kg bw/d) impaired oral tolerance as indicated by higher humoral and pro-inflammatory cellular responses in OVA-tolerized mice. However, only BPF exacerbate colitis in Il10-/- prone mice associated with a defect of fecal IgA and increased secretion of TNF-α in colon. These findings provide a unique comparative study on effects of adult oral exposure to BPs on immune responses and its consequences on NCD related to intestinal luminal antigen development.


Subject(s)
Benzhydryl Compounds/administration & dosage , Colitis/chemically induced , Endocrine Disruptors/administration & dosage , Food Intolerance/chemically induced , Immunity, Humoral/drug effects , Phenols/administration & dosage , Administration, Oral , Animals , Benzhydryl Compounds/toxicity , Dose-Response Relationship, Drug , Endocrine Disruptors/toxicity , Female , Inflammation/chemically induced , Male , Mice , Mice, Inbred C3H , Mice, Inbred C57BL , Ovalbumin/administration & dosage , Phenols/toxicity
12.
Microorganisms ; 8(11)2020 Oct 23.
Article in English | MEDLINE | ID: mdl-33113928

ABSTRACT

Cryptosporidium parvum causes diarrhea in infants under 5 years, in immunosuppressed individuals or in young ruminants. This parasite infects the apical side of ileal epithelial cells where it develops itself and induces inflammation. Antimicrobial peptides (AMPs) are part of the innate immune response, playing a major role in the control of the acute phase of C. parvum infection in neonates. Intestinal AMP production in neonates is characterized by high expressions of Cathelicidin Related Antimicrobial Peptide (CRAMP), the unique cathelicidin in mice known to fight bacterial infections. In this study, we investigated the role of CRAMP during cryptosporidiosis in neonates. We demonstrated that sporozoites are sensitive to CRAMP antimicrobial activity. However, during C. parvum infection the intestinal expression of CRAMP was significantly and selectively reduced, while other AMPs were upregulated. Moreover, despite high CRAMP expression in the intestine of neonates at homeostasis, the depletion of CRAMP did not worsen C. parvum infection. This result might be explained by the rapid downregulation of CRAMP induced by infection. However, the exogenous administration of CRAMP dampened the parasite burden in neonates. Taken together these results suggest that C. parvum impairs the production of CRAMP to subvert the host response, and highlight exogenous cathelicidin supplements as a potential treatment strategy.

13.
Environ Health ; 19(1): 93, 2020 08 31.
Article in English | MEDLINE | ID: mdl-32867778

ABSTRACT

BACKGROUND: Bisphenol A (BPA), one of the highest-volume chemicals produced worldwide, has been identified as an endocrine disruptor. Many peer-reviewing studies have reported adverse effects of low dose BPA exposure, particularly during perinatal period (gestation and/or lactation). We previously demonstrated that perinatal oral exposure to BPA (via gavage of mothers during gestation and lactation) has long-term consequences on immune response and intestinal barrier functions. Due to its adverse effects on several developmental and physiological processes, BPA was removed from consumer products and replaced by chemical substitutes such as BPS or BPF, that are structurally similar and not well studied compare to BPA. Here, we aimed to compare perinatal oral exposure to these bisphenols (BPs) at two doses (5 and 50 µg/kg of body weight (BW)/day (d)) on immune response at intestinal and systemic levels in female offspring mice at adulthood (Post Natal Day PND70). METHODS: Pregnant female mice were orally exposed to BPA, BPS or BPF at 5 or 50 µg/kg BW/d from 15th day of gravidity to weaning of pups at Post-Natal Day (PND) 21. Humoral and cellular immune responses of adult offspring (PND70) were analysed at intestinal and systemic levels. RESULTS: In female offspring, perinatal oral BP exposure led to adverse effects on intestinal and systemic immune response that were dependant of the BP nature (A, S or F) and dose of exposure. Stronger impacts were observed with BPS at the dose of 5 µg/kg BW/d on inflammatory markers in feces associated with an increase of anti-E. coli IgG in plasma. BPA and BPF exposure induced prominent changes at low dose in offspring mice, in term of intestinal and systemic immune responses, provoking an intestinal and systemic Th1/Th17 inflammation. CONCLUSION: These findings provide, for the first time, results of long-time consequences of BPA, S and F perinatal exposure by oral route on immune response in offspring mice. This work warns that it is mandatory to consider immune markers and dose exposure in risk assessment associated to new BPA's alternatives.


Subject(s)
Benzhydryl Compounds/adverse effects , Endocrine Disruptors/adverse effects , Immunity, Cellular/drug effects , Immunity, Humoral/drug effects , Phenols/adverse effects , Sulfones/adverse effects , Administration, Oral , Animals , Dose-Response Relationship, Drug , Female , Intestines/drug effects , Intestines/immunology , Lactation/drug effects , Maternal Exposure , Mice , Mice, Inbred C3H , Pregnancy/drug effects
14.
Front Immunol ; 11: 1823, 2020.
Article in English | MEDLINE | ID: mdl-32983091

ABSTRACT

Autoimmune disorders (ADs) are multifactorial diseases involving, genetic, epigenetic, and environmental factors characterized by an inappropriate immune response toward self-antigens. In the past decades, there has been a continuous rise in the incidence of ADs, which cannot be explained by genetic factors alone. Influence of psychological stress on the development or the course of autoimmune disorders has been discussed for a long time. Indeed, based on epidemiological studies, stress has been suggested to precede AD occurrence and to exacerbate symptoms. Furthermore, compiling data showed that most of ADs are associated with gastrointestinal symptoms, that is, microbiota dysbiosis, intestinal hyperpermeability, and intestinal inflammation. Interestingly, social stress (acute or chronic, in adult or in neonate) is a well-described intestinal disrupting factor. Taken together, those observations question a potential role of stress-induced defect of the intestinal barrier in the onset and/or the course of ADs. In this review, we aim to present evidences supporting the hypothesis for a role of stress-induced intestinal barrier disruption in the onset and/or the course of ADs. We will mainly focus on autoimmune type 1 diabetes, multiple sclerosis and systemic lupus erythematosus, ADs for which we could find sufficient circumstantial data to support this hypothesis. We excluded gastrointestinal (GI) ADs like coeliac disease to privilege ADs not focused on intestinal disorders to avoid confounding factors. Indeed, GIADs are characterized by antibodies directed against intestinal barrier actors.


Subject(s)
Autoimmune Diseases/immunology , Autoimmunity , Intestinal Mucosa/immunology , Stress, Psychological/immunology , Animals , Autoimmune Diseases/epidemiology , Autoimmune Diseases/metabolism , Autoimmune Diseases/microbiology , Diabetes Mellitus, Type 1/epidemiology , Diabetes Mellitus, Type 1/immunology , Diabetes Mellitus, Type 1/metabolism , Diabetes Mellitus, Type 1/microbiology , Dysbiosis , Gastrointestinal Microbiome , Host-Pathogen Interactions , Humans , Intestinal Mucosa/metabolism , Intestinal Mucosa/microbiology , Lupus Erythematosus, Systemic/epidemiology , Lupus Erythematosus, Systemic/immunology , Lupus Erythematosus, Systemic/metabolism , Lupus Erythematosus, Systemic/microbiology , Multiple Sclerosis/epidemiology , Multiple Sclerosis/immunology , Multiple Sclerosis/metabolism , Multiple Sclerosis/microbiology , Permeability , Risk Factors , Stress, Psychological/epidemiology , Stress, Psychological/metabolism , Stress, Psychological/microbiology
15.
Arch Toxicol ; 94(9): 3173-3184, 2020 09.
Article in English | MEDLINE | ID: mdl-32617661

ABSTRACT

The incidence of inflammatory bowel diseases (IBD) is increasing in both Western and developing countries. IBD are multifactorial disorders involving complex interactions between genetic, immune, and environmental factors such as exposure to food contaminants. Deoxynivalenol (DON) is the most prevalent mycotoxin that contaminates staple food and induces intestinal breakdown and inflammatory response. To delineate the role of DON oral exposure in IBD, we used a Dextran sulfate sodium (DSS) colitis model in rats fed with a DON-contaminated diet or a control diet for 4 weeks. Colitis was induced in the 4th week by increasing concentrations of DSS in the drinking water (0, 2, 3 or 5%). DON exacerbated body weight loss and accelerated the appearance of symptoms in animals treated with DSS. DON increased morphological damage, pro-inflammatory markers (myeloperoxidase, CXCL-1 and IL-1ß) and immune cell responses. In lamina propria of the rat with colitis, DON increased adaptive and innate immune responses after anti-CD3/28 or LPS stimulation, respectively. In the spleen, DON increased IFNγ secretion and reduced Treg populations. Interestingly, De-epoxy-DON (DOM-1) a detoxified form of DON did not have any consequences on colitis. These results suggest that DON is a risk factor in the onset of IBD.


Subject(s)
Food Contamination , Inflammatory Bowel Diseases/chemically induced , Mycotoxins/toxicity , T-Lymphocytes, Regulatory/drug effects , Trichothecenes/toxicity , Animals , Colitis , Dextran Sulfate , Diet , Disease Models, Animal , Intestines , Male , Rats
17.
Sci Rep ; 9(1): 20169, 2019 12 27.
Article in English | MEDLINE | ID: mdl-31882815

ABSTRACT

Metabolic diseases such as obesity, type II diabetes and hepatic steatosis are a public health concern in developed countries. The metabolic risk is gender-dependent. The constitutive androstane receptor (CAR), which is at the crossroads between energy metabolism and endocrinology, has recently emerged as a promising therapeutic agent for the treatment of obesity and type 2 diabetes. In this study we sought to determine its role in the dimorphic regulation of energy homeostasis. We tracked male and female WT and CAR deficient (CAR-/-) mice for over a year. During aging, CAR-/- male mice developed hypercortisism, obesity, glucose intolerance, insulin insensitivity, dyslipidemia and hepatic steatosis. Remarkably, the latter modifications were absent, or minor, in female CAR-/- mice. When ovariectomized, CAR-/- female mice developed identical patterns of metabolic disorders as observed in male mice. These results highlight the importance of steroid hormones in the regulation of energy metabolism by CAR. They unveil a sexually dimorphic role of CAR in the maintenance of endocrine and metabolic homeostasis underscoring the importance of considering sex in treatment of metabolic diseases.

18.
Brain Behav Immun ; 80: 452-463, 2019 08.
Article in English | MEDLINE | ID: mdl-30981713

ABSTRACT

Early life stress is known to impair intestinal barrier through induction of intestinal hyperpermeability, low-grade inflammation and microbiota dysbiosis in young adult rodents. Interestingly, those features are also observed in metabolic disorders (obesity and type 2 diabetes) that appear with ageing. Based on the concept of Developmental Origins of Health and Diseases, our study aimed to investigate whether early life stress can trigger metabolic disorders in ageing mice. Maternal separation (MS) is a well-established model of early life stress in rodent. In this study, MS increased fasted blood glycemia, induced glucose intolerance and decreased insulin sensitivity in post-natal day 350 wild type C3H/HeN male mice fed a standard diet without affecting body weight. MS also triggered fecal dysbiosis favoring pathobionts and significantly decreased IL-17 and IL-22 secretion in response to anti-CD3/CD28 stimulation in small intestine lamina propria. Finally, IL-17 secretion in response to anti-CD3/CD28 stimulation was also diminished at systemic level (spleen). For the first time, we demonstrate that early life stress is a risk factor for metabolic disorders development in ageing wild type mice under normal diet.


Subject(s)
Glucose Intolerance/etiology , Glucose Intolerance/metabolism , Stress, Psychological/physiopathology , Animals , Diabetes Mellitus, Type 2/complications , Dysbiosis/metabolism , Female , Gastrointestinal Microbiome/physiology , Glucose Intolerance/physiopathology , Inflammation/metabolism , Insulin Resistance/physiology , Intestinal Mucosa/metabolism , Intestinal Mucosa/microbiology , Intestines/microbiology , Male , Maternal Deprivation , Mice , Mice, Inbred C3H , Mice, Inbred C57BL , Microbiota/physiology , Obesity/metabolism
19.
Arch Toxicol ; 93(2): 505-517, 2019 02.
Article in English | MEDLINE | ID: mdl-30448865

ABSTRACT

Fumonisin B1 (FB1), a congener of fumonisins produced by Fusarium species, is the most abundant and most toxicologically active fumonisin. FB1 causes severe mycotoxicosis in animals, including nephrotoxicity, hepatotoxicity, and disruption of the intestinal barrier. However, mechanisms associated with FB1 toxicity are still unclear. Preliminary studies have highlighted the role of liver X receptors (LXRs) during FB1 exposure. LXRs belong to the nuclear receptor family and control the expression of genes involved in cholesterol and lipid homeostasis. In this context, the toxicity of FB1 was compared in female wild-type (LXR+/+) and LXRα,ß double knockout (LXR-/-) mice in the absence or presence of FB1 (10 mg/kg body weight/day) for 28 days. Exposure to FB1 supplemented in the mice's drinking water resulted in more pronounced hepatotoxicity in LXR-/- mice compared to LXR+/+ mice, as indicated by hepatic transaminase levels (ALT, AST) and hepatic inflammatory and fibrotic lesions. Next, the effect of FB1 exposure on the liver transcriptome was investigated. FB1 exposure led to a specific transcriptional response in LXR-/- mice that included altered cholesterol and bile acid homeostasis. ELISA showed that these effects were associated with an elevated FB1 concentration in the plasma of LXR-/- mice, suggesting that LXRs participate in intestinal absorption and/or clearance of the toxin. In summary, this study demonstrates an important role of LXRs in protecting the liver against FB1-induced toxicity, suggesting an alternative mechanism not related to the inhibition of sphingolipid synthesis for mycotoxin toxicity.


Subject(s)
Chemical and Drug Induced Liver Injury/metabolism , Fumonisins/toxicity , Liver X Receptors/metabolism , Alanine Transaminase/metabolism , Animals , Aspartate Aminotransferases/metabolism , Chemical and Drug Induced Liver Injury/etiology , Chemical and Drug Induced Liver Injury/pathology , Female , Fumonisins/blood , Gene Expression Regulation/drug effects , Liver/drug effects , Liver/physiology , Liver X Receptors/genetics , Mice, Inbred C57BL , Mice, Knockout , Sphingolipids/metabolism
20.
Arch Toxicol ; 92(1): 347-358, 2018 Jan.
Article in English | MEDLINE | ID: mdl-28733891

ABSTRACT

The potent immunomodulatory effect of the endocrine disruptor bisphenol A during development and consequences during life span are of increasing concern. Particular interests have been raised from animal studies regarding the risk of developing food intolerance and infection. We aimed to identify immune disorders in mice triggered by perinatal exposure to bisphenol A. Gravid mice were orally exposed to bisphenol (50 µg/kg body weight/day) from day 15 of pregnancy until weaning. Gut barrier function, local and systemic immunity were assessed in adult female offspring. Mice perinatally exposed to bisphenol showed a decrease in ileal lysozyme expression and a fall of fecal antimicrobial activity. In offspring mice exposed to bisphenol, an increase in colonic permeability was observed associated with an increase in interferon-γ level and a drop of colonic IgA+ cells and fecal IgA production. Interestingly, altered frequency of innate lymphoid cells type 3 occurred in the small intestine, with an increase in IgG response against commensal bacteria in sera. These effects were related to a defect in dendritic cell maturation in the lamina propria and spleen. Activated and regulatory T cells were decreased in the lamina propria. Furthermore, perinatal exposure to bisphenol promoted a sharp increase in interferon-γ and interleukin-17 production in the intestine and elicited a T helper 17 profile in the spleen. To conclude, perinatal exposure to bisphenol weakens protective and regulatory immune functions in the intestine and at systemic level in adult offspring. The increased susceptibility to inflammatory response is an interesting lead supporting bisphenol-mediated adverse consequences on food reactions and infections.


Subject(s)
Benzhydryl Compounds/toxicity , Gastrointestinal Tract/immunology , Phenols/toxicity , Prenatal Exposure Delayed Effects , T-Lymphocytes/immunology , Aldehyde Dehydrogenase 1 Family , Animals , Dendritic Cells/physiology , Endocrine Disruptors/toxicity , Feces/microbiology , Female , Gastrointestinal Tract/physiopathology , Immunity, Humoral , Inflammation/immunology , Isoenzymes/metabolism , Male , Mice, Inbred C3H , Muramidase/metabolism , Pregnancy , Retinal Dehydrogenase/metabolism , Spleen/cytology , Spleen/physiology , Th17 Cells/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...