Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Language
Publication year range
1.
Front Neuroergon ; 5: 1382919, 2024.
Article in English | MEDLINE | ID: mdl-38784138

ABSTRACT

Introduction: Sleep-wake cycle disruption caused by shift work may lead to cardiovascular stress, which is observed as an alteration in the behavior of heart rate variability (HRV). In particular, HRV exhibits complex patterns over different time scales that help to understand the regulatory mechanisms of the autonomic nervous system, and changes in the fractality of HRV may be associated with pathological conditions, including cardiovascular disease, diabetes, or even psychological stress. The main purpose of this study is to evaluate the multifractal-multiscale structure of HRV during sleep in healthy shift and non-shift workers to identify conditions of cardiovascular stress that may be associated with shift work. Methods: The whole-sleep HRV signal was analyzed from female participants: eleven healthy shift workers and seven non-shift workers. The HRV signal was decomposed into intrinsic mode functions (IMFs) using the empirical mode decomposition method, and then the IMFs were analyzed using the multiscale-multifractal detrended fluctuation analysis (MMF-DFA) method. The MMF-DFA was applied to estimate the self-similarity coefficients, α(q, τ), considering moment orders (q) between -5 and +5 and scales (τ) between 8 and 2,048 s. Additionally, to describe the multifractality at each τ in a simple way, a multifractal index, MFI(τ), was computed. Results: Compared to non-shift workers, shift workers presented an increase in the scaling exponent, α(q, τ), at short scales (τ < 64 s) with q < 0 in the high-frequency component (IMF1, 0.15-0.4 Hz) and low-frequency components (IMF2-IMF3, 0.04-0.15 Hz), and with q> 0 in the very low frequencies (IMF4, < 0.04 Hz). In addition, at large scales (τ> 1,024 s), a decrease in α(q, τ) was observed in IMF3, suggesting an alteration in the multifractal dynamic. MFI(τ) showed an increase at small scales and a decrease at large scales in IMFs of shift workers. Conclusion: This study helps to recognize the multifractality of HRV during sleep, beyond simply looking at indices based on means and variances. This analysis helps to identify that shift workers show alterations in fractal properties, mainly on short scales. These findings suggest a disturbance in the autonomic nervous system induced by the cardiovascular stress of shift work.

2.
Rev. mex. ing. bioméd ; 41(3): e1050, Sep.-Dec. 2020. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1150053

ABSTRACT

Abstract Multiple Sclerosis (MS) is the most common neurodegenerative disease among young adults. Diagnosis and monitoring of MS is performed with T2-weighted or T2 FLAIR magnetic resonance imaging, where MS lesions appear as hyperintense spots in the white matter. In recent years, multiple algorithms have been proposed to detect these lesions with varying success rates, which greatly depend on the amount of a priori information required by each algorithm, such as the use of an atlas or the involvement of an expert to guide the segmentation process. In this work, a fully automatic method that does not rely on a priori anatomical information is proposed and evaluated. The proposed algorithm is based on an over-segmentation in superpixels and their classification by means of Gauss-Markov Measure Fields (GMMF). The main advantage of the over-segmentation is that it preserves the borders between tissues, while the GMMF classifier is robust to noise and computationally efficient. The proposed segmentation is then applied in two stages: first to segment the brain region and then to detect hyperintense spots within the brain. The proposed method is evaluated with synthetic images from BrainWeb, as well as real images from MS patients. The proposed method produces competitive results with respect to other algorithms in the state of the art, without requiring user assistance nor anatomical prior information.


Resumen La Esclerosis Múltiple (MS) es una de las enfermedades neurodegenerativas más comunes en adultos jóvenes. El diagnóstico y su monitoreo se realiza generalmente mediante imágenes de resonancia magnética T2 o T2 FLAIR, donde se observan regiones hiperintensas relacionadas a lesiones cerebrales causadas por la MS. En años recientes, múltiples algoritmos han sido propuestos para detectar estas lesiones con diferentes tasas de éxito las cuales dependen en gran medida de la cantidad de información a priori que requiere cada algoritmo, como el uso de un atlas o el involucramiento de un experto que guíe el proceso de segmentación. En este trabajo, se propone un método automático independiente de información anatómica. El algoritmo propuesto está basado en una sobresegmentación en superpixeles y su clasificación mediante un proceso de Campos Aleatorios de Markov de Medidas Gaussianas (GMMF). La principal ventaja de la sobresegmentación es que preserva bordes entre tejidos, además que tiene un costo reducido en tiempo de ejecución, mientras que el clasificador GMMF es robusto a ruido y computacionalmente eficiente. La segmentación propuesta es aplicada en dos etapas: primero para segmentar el cerebro y después para detectar las lesiones en él. El método propuesto es evaluado usando imágenes sintéticas de BrainWeb, así como también imágenes reales de pacientes con MS. Con respecto a los resultados, el método propuesto muestra un desempeño competitivo respecto a otros métodos en el estado del arte, tomando en cuenta que éste no requiere de asistencia o información a priori.

3.
Med Biol Eng Comput ; 58(5): 1003-1014, 2020 May.
Article in English | MEDLINE | ID: mdl-32124224

ABSTRACT

A series of short events, called A-phases, can be observed in the human electroencephalogram (EEG) during Non-Rapid Eye Movement (NREM) sleep. These events can be classified in three groups (A1, A2, and A3) according to their spectral contents, and are thought to play a role in the transitions between the different sleep stages. A-phase detection and classification is usually performed manually by a trained expert, but it is a tedious and time-consuming task. In the past two decades, various researchers have designed algorithms to automatically detect and classify the A-phases with varying degrees of success, but the problem remains open. In this paper, a different approach is proposed: instead of attempting to design a general classifier for all subjects, we propose to train ad-hoc classifiers for each subject using as little data as possible, in order to drastically reduce the amount of time required from the expert. The proposed classifiers are based on deep convolutional neural networks using the log-spectrogram of the EEG signal as input data. Results are encouraging, achieving average accuracies of 80.31% when discriminating between A-phases and non A-phases, and 71.87% when classifying among A-phase sub-types, with only 25% of the total A-phases used for training. When additional expert-validated data is considered, the sub-type classification accuracy increases to 78.92%. These results show that a semi-automatic annotation system with assistance from an expert could provide a better alternative to fully automatic classifiers. Graphical abstract A/N Deep Learning Classifier.


Subject(s)
Electroencephalography/classification , Electroencephalography/methods , Neural Networks, Computer , Signal Processing, Computer-Assisted , Sleep Stages/physiology , Adult , Deep Learning , Female , Humans , Male , Young Adult
4.
IEEE Trans Biomed Eng ; 60(6): 1711-20, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23358941

ABSTRACT

This paper presents a new unmixing methodology of multispectral fluorescence lifetime imaging microscopy (m-FLIM) data, in which the spectrum is defined as the combination of time-domain fluorescence decays at multiple emission wavelengths. The method is based on a quadratic constrained optimization (CO) algorithm that provides a closed-form solution under equality and inequality restrictions. In this paper, it is assumed that the time-resolved fluorescence spectrum profiles of the constituent components are linearly independent and known a priori. For comparison purposes, the standard least squares (LS) solution and two constrained versions nonnegativity constrained least squares (NCLS) and fully constrained least squares (FCLS) (Heinz and Chang, 2001) are also tested. Their performance was evaluated by using synthetic simulations, as well as imaged samples from fluorescent dyes and ex vivo tissue. In all the synthetic evaluations, the CO obtained the best accuracy in the estimations of the proportional contributions. CO could achieve an improvement ranging between 41% and 59% in the relative error compared to LS, NCLS, and FCLS at different signal-to-noise ratios. A liquid mixture of fluorescent dyes was also prepared and imaged in order to provide a controlled scenario with real data, where CO and FCLS obtained the best performance. The CO and FCLS were also tested with 20 ex vivo samples of human coronary arteries, where the expected concentrations are qualitatively known. A certainty measure was employed to assess the confidence in the estimations made by each algorithm. The experiments confirmed a better performance of CO, since this method is optimal with respect to equality and inequality restrictions in the linear unmixing formulation. Thus, the evaluation showed that CO achieves an accurate characterization of the samples. Furthermore, CO is a computational efficient alternative to estimate the abundance of components in m-FLIM data, since a global optimal solution is always guaranteed in a closed form.


Subject(s)
Image Processing, Computer-Assisted/methods , Microscopy, Fluorescence/methods , Algorithms , Collagen/chemistry , Coronary Vessels , Elastin/chemistry , Fluorescent Dyes/chemistry , Humans , Signal-To-Noise Ratio
5.
Article in English | MEDLINE | ID: mdl-23367371

ABSTRACT

A novel method for approximate string matching with applications to bioinformatics is presented in this paper. Unlike most methods in the literature, the proposed method does not depend on the computation of the edit distance between two sequences, but uses instead a similarity index obtained by applying the phase correlation method. The resulting algorithm provides a finer control over the false positive rate, allowing users to pick out relevant matchings in less time, and can be applied for both offline and online processing.


Subject(s)
Computational Biology , Pattern Recognition, Automated , Algorithms , Amino Acid Sequence , Molecular Sequence Data , Proteins/chemistry
6.
Article in English | MEDLINE | ID: mdl-21097277

ABSTRACT

Automatic detection of the sleep macrostructure (Wake, NREM -non Rapid Eye Movement- and REM -Rapid Eye Movement-) based on bed sensor signals is presented. This study assesses the feasibility of different methodologies to evaluate the sleep quality out of sleep centers. The study compares a) the features extracted from time-variant autoregressive modeling (TVAM) and Wavelet Decomposition (WD) and b) the performance of K-Nearest Neighbor (KNN) and Feed Forward Neural Networks (FFNN) classifiers. In the current analysis, 17 full polysomnography recordings from healthy subjects were used. The best agreement for Wake-NREM-REM with respect to the gold standard was 71.95 ± 7.47% of accuracy and 0.42 ± 0.10 of kappa index for TVAM-LD while WD-FFNN shows 67.17 ± 11.88% of accuracy and 0.39 ± 0.13 of kappa index. The results suggest that the sleep quality assessment out of sleep centers could be possible and as consequence more people could be beneficiated.


Subject(s)
Sleep , Automation , Feasibility Studies , Humans , Polysomnography
SELECTION OF CITATIONS
SEARCH DETAIL