Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Brain Struct Funct ; 229(3): 609-637, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37615757

ABSTRACT

The dopaminergic (DA) system regulates both motor function, and learning and memory. The cerebellum supports motor control and the acquisition of procedural memories, including goal-directed behavior, and is subjected to DA control. Its fastigial nucleus (FN) controls and interprets body motion through space. The expression of dopamine receptors has been reported in the deep cerebellar nuclei of mice. However, the presence of dopamine D1-like (D1R) and D2-like (D2R) receptors in the rat FN has not yet been verified. In this study, we first confirmed that DA receptors are expressed in the FN of adult rats and then targeted these receptors to explore to what extent the FN modulates goal-directed behavior. Immunohistochemical assessment revealed expression of both D1R and D2R receptors in the FN, whereby the medial lateral FN exhibited higher receptor expression compared to the other FN subfields. Bilateral treatment of the FN with a D1R antagonist, prior to a goal-directed pellet-reaching task, significantly impaired task acquisition and decreased task engagement. D2R antagonism only reduced late performance post-acquisition. Once task acquisition had occurred, D1R antagonism had no effect on successful reaching, although it significantly decreased reaching speed, task engagement, and promoted errors. Motor coordination and ambulation were, however, unaffected as neither D1R nor D2R antagonism altered rotarod latencies or distance and velocity in an open field. Taken together, these results not only reveal a novel role for the FN in goal-directed skilled reaching, but also show that D1R expressed in FN regulate this process by modulating motivation for action.


Subject(s)
Cerebellar Nuclei , Motivation , Rats , Animals , Mice , Cerebellar Nuclei/metabolism , Rodentia/metabolism , Receptors, Dopamine D2/metabolism , Receptors, Dopamine D1/metabolism , Goals , Dopamine/metabolism
2.
Neuropharmacology ; 227: 109444, 2023 04 01.
Article in English | MEDLINE | ID: mdl-36724867

ABSTRACT

Recent studies have revealed impairments in Cacna1c ± heterozygous animals (a gene that encodes the Cav 1.2 L-type voltage-gated calcium channels and is implicated in risk for multiple neuropsychiatric disorders) in aversive forms of learning, such as latent inhibition, reversal learning or context discrimination. However, the role of Cav 1.2 L-type voltage-gated calcium channels in extinction of appetitive associations remains under-investigated. Here, we used an appetitive Pavlovian conditioning task and evaluated extinction learning (EL) with a change of context from that of training and test (ABA) and without such a change (AAA) in Cacna1c ± male rats versus their wild-type (WT) littermates. In addition, we used fluorescence in situ hybridization of somatic immediate early genes (IEGs) Arc and Homer1a expression to scrutinize associated changes in the medial prefrontal cortex and the amygdala. Cacna1c ± animals successfully adapt their responses by engaging in appetitive EL and renewal. However, the regional IEG expression profile changed. For the EL occurring in the same context, Cacna1c ± animals presented higher IEG expression in the infralimbic cortex and the central amygdala than controls. The prelimbic region presented a larger neural ensemble in Cacna1c ± than WT animals, co-labelled for the time window of EL in the original context and prolonged exposure to the unrewarded context. With a context change, the Cacna1c ± infralimbic region displayed higher IEG expression during renewal than controls. Taken together, our findings provide novel evidence of distinct brain activation patterns occurring in Cacna1c ± rats after appetitive extinction and renewal despite preserved behavioral responses. This article is part of the Special Issue on "L-type calcium channel mechanisms in neuropsychiatric disorders".


Subject(s)
Amygdala , Prefrontal Cortex , Rats , Male , Animals , Prefrontal Cortex/metabolism , In Situ Hybridization, Fluorescence , Amygdala/metabolism , Brain/metabolism , Calcium Channels/metabolism , Extinction, Psychological/physiology , Calcium Channels, L-Type/metabolism
3.
Hippocampus ; 32(9): 695-704, 2022 09.
Article in English | MEDLINE | ID: mdl-35920344

ABSTRACT

Hippocampal neuronal oscillations reflect different cognitive processes and can therefore be used to dissect the role of hippocampal subfields in learning and memory. In particular, it has been suggested that encoding and retrieval is associated with slow gamma (25-55 Hz) and fast gamma (60-100 Hz) oscillations, respectively, which appear in a nested manner at specific phases of the ongoing theta oscillations (4-12 Hz). However, the relationship between memory demand and the theta phase of gamma oscillations remains unclear. Here, we assessed the theta phase preference of gamma oscillations in the CA1 region, at the starting and junction zones of a T-maze, while rats were learning an appetitive task. We found that the theta phase preference of slow gamma showed a ~180° phase shift when animals switched from novice to skilled performance during task acquisition. This phase-shift was not present at the junction zone, where animals chose a right or left turn within the T-maze, suggesting that a recall/decision process had already taken place at the starting zone. Our findings indicate that slow gamma oscillations support both encoding and retrieval, depending on the theta phase at which they occur. These properties are particularly evident prior to cognitive engagement in an acquired spatial task.


Subject(s)
Hippocampus , Theta Rhythm , Animals , Gamma Rhythm/physiology , Hippocampus/physiology , Mental Recall , Neurons , Rats , Theta Rhythm/physiology
4.
Neurobiol Learn Mem ; 187: 107561, 2022 01.
Article in English | MEDLINE | ID: mdl-34838984

ABSTRACT

INTRODUCTION: The neuropeptide Y (NPY) is broadly distributed in the central nervous system (CNS), and it has been related to neuroprotective functions. NPY seems to be an important component to counteract brain damage and cognitive impairment mediated by drugs of abuse and neurodegenerative diseases, and both NPY and its Y2 receptor (Y2R) are highly expressed in the hippocampus, critical for learning and memory. We have recently demonstrated its influence on cognitive functions; however, the specific mechanism and involved brain regions where NPY modulates spatial memory by acting on Y2R remain unclear. METHODS: Here, we examined the involvement of the hippocampal NPY Y2R in spatial memory and associated changes in brain metabolism by bilateral administration of the selective antagonist BIIE0246 into the rat dorsal hippocampus. To further evaluate the relationship between memory functions and neuronal activity, we analysed the regional expression of the mitochondrial enzyme cytochrome c oxidase (CCO) as an index of oxidative metabolic capacity in limbic and non-limbic brain regions. RESULTS: The acute blockade of NPY Y2R significantly improved spatial memory recall in rats trained in the Morris water maze that matched metabolic activity changes in spatial memory processing regions. Specifically, CCO activity changes were found in the dentate gyrus of the dorsal hippocampus and CA1 subfield of the ventral hippocampus, the infralimbic region of the PFC and the mammillary bodies. CONCLUSIONS: These findings suggest that the NPY hippocampal system, through its Y2R receptor, influences spatial memory recall (retrieval) and exerts control over patterns of brain activation that are relevant for associative learning, probably mediated by Y2R modulation of long-term potentiation and long-term depression.


Subject(s)
Hippocampus/metabolism , Mental Recall/physiology , Neuropeptide Y/metabolism , Receptors, Neuropeptide Y/metabolism , Spatial Memory/physiology , Animals , Brain/metabolism , Limbic System/metabolism , Male , Morris Water Maze Test , Neuronal Plasticity , Neurons/metabolism , Rats
5.
Front Behav Neurosci ; 15: 658686, 2021.
Article in English | MEDLINE | ID: mdl-33994970

ABSTRACT

Brain derived neurotropic factor (BDNF) supports neuronal survival, growth, and differentiation and is involved in forms of hippocampus-dependent and independent learning, as well as hippocampus-dependent learning. Extinction learning comprises active inhibition of no-longer relevant learned information, in conjunction with a decreased response of a previously learned behavior. It is highly dependent on context, and evidence exists that it requires hippocampal activation. The participation of BDNF in memory processing is experience-dependent. For example, BDNF has been associated with synaptic plasticity needed for spatial learning, and it is involved in acquisition and extinction learning of fear conditioning. However, little is known about its role in spatial appetitive extinction learning. In this study, we evaluated to what extent BDNF contributes to spatial appetitive extinction learning in the presence (ABA) or absence (AAA) of exposure to the acquisition context. Daily training, of BDNF+/--mice or their wildtype (WT) littermates, to reach acquisition criterion in a T-maze, resulted in a similar performance outcome. However, extinction learning was delayed in the AAA, and impaired in the ABA-paradigm compared to performance in WT littermates. Trial-by-trial learning analysis indicated differences in the integration of the context into extinction learning by BDNF+/--mice compared to WT littermates. Taken together, these results support an important role for BDNF in processes that relate to information updating and retrieval that in turn are crucial for effective extinction learning.

7.
Behav Brain Res ; 396: 112864, 2021 01 01.
Article in English | MEDLINE | ID: mdl-32827566

ABSTRACT

Neuropeptide Y (NPY) is highly abundant in the brain and is released as a co-transmitter with plasticity-related neurotransmitters such as glutamate, GABA and noradrenaline. Functionally, its release is associated with appetite, anxiety, and stress regulation. NPY acting on Y2 receptors (Y2R), facilitates fear extinction, suggesting a role in associative memory. Here, we explored to what extent NPY action at Y2R contributes to hippocampus-dependent spatial memory and found that dorsal intrahippocampal receptor antagonism improved spatial reference memory acquired in a water maze in rats, without affecting anxiety levels, or spontaneous motor activity. Water maze training resulted in an increase of Y2R, but not Y1R expression in the hippocampus. By contrast, in the prefrontal cortex there was a decrease in Y2R, and an increase of Y1R expression. Our results indicate that neuropeptide Y2R are significantly involved in hippocampus-dependent spatial memory and that receptor expression is dynamically regulated by this learning experience. Effects are consistent with a metaplastic contribution of NPY receptors to cumulative spatial learning.


Subject(s)
Extinction, Psychological/physiology , Hippocampus/metabolism , Maze Learning/physiology , Prefrontal Cortex/metabolism , Receptors, Neuropeptide Y/metabolism , Spatial Memory/physiology , Animals , Behavior, Animal/drug effects , Behavior, Animal/physiology , Extinction, Psychological/drug effects , Hippocampus/drug effects , Male , Maze Learning/drug effects , Prefrontal Cortex/drug effects , Rats , Rats, Wistar , Receptors, Neuropeptide Y/antagonists & inhibitors , Spatial Memory/drug effects
8.
Front Behav Neurosci ; 13: 256, 2019.
Article in English | MEDLINE | ID: mdl-31798429

ABSTRACT

During extinction learning (EL), an individual learns that a previously learned behavior no longer fulfills its original purpose, or is no longer relevant. Recent studies have contradicted earlier theories that EL comprises forgetting, or the inhibition of the previously learned behavior, and indicate that EL comprises new associative learning. This suggests that the hippocampus is involved in this process. Empirical evidence is lacking however. Here, we used fluorescence in situ hybridization of somatic immediate early gene (IEG) expression to scrutinize if the hippocampus processes EL. Rodents engaged in context-dependent EL and were also tested for renewal of (the original behavioral response to) a spatial appetitive task in a T-maze. Whereas distal and proximal CA1 subfields processed both EL and renewal, effects in the proximal CA1 were more robust consistent with a role of this subfield in processing context. The lower blade of the dentate gyrus (DG) and the proximal CA3 subfields were particularly involved in renewal. Responses in the distal and proximal CA3 subfields suggest that this hippocampal subregion may also contribute to the evaluation of the reward outcome. Taken together, our findings provide novel and direct evidence for the involvement of distinct hippocampal subfields in context-dependent EL and renewal.

9.
Hippocampus ; 26(10): 1265-75, 2016 10.
Article in English | MEDLINE | ID: mdl-27102086

ABSTRACT

Previous studies showed the involvement of brain regions associated with both spatial learning and associative learning in spatial memory extinction, although the specific role of the dorsal and ventral hippocampus and the extended hippocampal system including the mammillary body in the process is still controversial. The present study aimed to identify the involvement of the dorsal and ventral hippocampus, together with cortical regions, the amygdaloid nuclei, and the mammillary bodies in the extinction of a spatial memory task. To address these issues, quantitative cytochrome c oxidase histochemistry was applied as a metabolic brain mapping method. Rats were trained in a reference memory task using the Morris water maze, followed by an extinction procedure of the previously acquired memory task. Results show that rats learned successfully the spatial memory task as shown by the progressive decrease in measured latencies to reach the escape platform and the results obtained in the probe test. Spatial memory was subsequently extinguished as shown by the descending preference for the previously reinforced location. A control naïve group was added to ensure that brain metabolic changes were specifically related with performance in the spatial memory extinction task. Extinction of the original spatial learning task significantly modified the metabolic activity in the dorsal and ventral hippocampus, the amygdala and the mammillary bodies. Moreover, the ventral hippocampus, the lateral mammillary body and the retrosplenial cortex were differentially recruited in the spatial memory extinction task, as shown by group differences in brain metabolic networks. These findings provide new insights on the brain regions and functional brain networks underlying spatial memory, and specifically spatial memory extinction. © 2016 Wiley Periodicals, Inc.


Subject(s)
Extinction, Psychological/physiology , Hippocampus/metabolism , Spatial Memory/physiology , Amygdala/metabolism , Animals , Cerebral Cortex/metabolism , Electron Transport Complex IV/metabolism , Male , Mammillary Bodies/metabolism , Maze Learning/physiology , Neural Pathways/metabolism , Neuropsychological Tests , Random Allocation , Rats, Wistar
10.
Behav Brain Res ; 287: 247-55, 2015.
Article in English | MEDLINE | ID: mdl-25813749

ABSTRACT

Several studies suggest a prefrontal cortex involvement during the acquisition and consolidation of spatial memory, suggesting an active modulating role at late stages of acquisition processes. Recently, we have reported that the prelimbic and infralimbic areas of the prefrontal cortex, among other structures, are also specifically involved in the late phases of spatial memory extinction. This study aimed to evaluate whether the inactivation of the prelimbic area of the prefrontal cortex impaired spatial memory extinction. For this purpose, male Wistar rats were implanted bilaterally with cannulae into the prelimbic region of the prefrontal cortex. Animals were trained during 5 consecutive days in a hidden platform task and tested for reference spatial memory immediately after the last training session. One day after completing the training task, bilateral infusion of the GABAA receptor agonist Muscimol was performed before the extinction protocol was carried out. Additionally, cytochrome c oxidase histochemistry was applied to map the metabolic brain activity related to the spatial memory extinction under prelimbic cortex inactivation. Results show that animals acquired the reference memory task in the water maze, and the extinction task was successfully completed without significant impairment. However, analysis of the functional brain networks involved by cytochrome oxidase activity interregional correlations showed changes in brain networks between the group treated with Muscimol as compared to the saline-treated group, supporting the involvement of the mammillary bodies at a the late stage in the memory extinction process.


Subject(s)
Extinction, Psychological/physiology , Nerve Net/enzymology , Prefrontal Cortex/enzymology , Spatial Memory/physiology , Animals , Brain/drug effects , Brain/enzymology , Extinction, Psychological/drug effects , GABA-A Receptor Agonists/pharmacology , Male , Muscimol/pharmacology , Nerve Net/drug effects , Prefrontal Cortex/drug effects , Rats , Rats, Wistar , Retention, Psychology/drug effects , Retention, Psychology/physiology , Spatial Memory/drug effects
11.
PLoS One ; 8(5): e64749, 2013.
Article in English | MEDLINE | ID: mdl-23724089

ABSTRACT

Functional inactivation techniques enable studying the hippocampal involvement in each phase of spatial memory formation in the rat. In this study, we applied tetrodotoxin unilaterally or bilaterally into the dorsal hippocampus to evaluate the role of this brain structure in retrieval of memories acquired 28 days before in the Morris water maze. We combined hippocampal inactivation with the assessment of brain metabolism using cytochrome oxidase histochemistry. Several brain regions were considered, including the hippocampus and other related structures. Results showed that both unilateral and bilateral hippocampal inactivation impaired spatial memory retrieval. Hence, whereas subjects with bilateral hippocampal inactivation showed a circular swim pattern at the side walls of the pool, unilateral inactivation favoured swimming in the quadrants adjacent to the target one. Analysis of cytochrome oxidase activity disclosed regional differences according to the degree of hippocampal functional blockade. In comparison to control group, animals with bilateral inactivation showed increased CO activity in CA1 and CA3 areas of the hippocampus during retrieval, while the activity of the dentate gyrus substantially decreased. However, unilateral inactivated animals showed decreased CO activity in Ammon's horn and the dentate gyrus. This study demonstrated that retrieval recruits differentially the hippocampal subregions and the balance between them is altered with hippocampal functional lesions.


Subject(s)
Hippocampus/metabolism , Hippocampus/physiopathology , Memory, Long-Term/drug effects , Tetrodotoxin/toxicity , Animals , Behavior, Animal/drug effects , Electron Transport Complex IV/metabolism , Hippocampus/drug effects , Hippocampus/pathology , Learning Curve , Male , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...