Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 26(8): 6939-6948, 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38334443

ABSTRACT

The upper hydrogen-storage capacity limit of the ß-hydroquinone clathrate has been investigated using hybrid Grand-Canonical Monte Carlo/Molecular Dynamics simulations, for temperatures ranging from 77 K to 300 K. The evolution with pressure of the cage occupancies has been monitored in detail, describing the progressive nature of the uptake process. It is found that the storage capacity of the pure ß-HQ + H2 clathrate could reach 0.6 wt% (weight percentage) only for pressures above 1400 bar, at ambient temperature. The enhancement of the storage capacities by the multiple occupancy phenomenom was accordingly shown to be very limited by the need for extreme conditions. Following this observation, an unmodified version of the van der Waals & Platteeuw theory was applied allowing for the prediction of experimentally accessible formation pressures. Density functional theory calculations were addittionnaly performed to comprehensively characterize the hydrogen diffusion process within the clathrate crystalline structure, considering different occupancy scenarios.

2.
J Chem Phys ; 156(1): 014706, 2022 Jan 07.
Article in English | MEDLINE | ID: mdl-34998333

ABSTRACT

The mechanism of charge transfer between metal ions and graphene in the presence of an ionic liquid (1-butyl-3-methylimidazolium tetrafluoroborate) is investigated by means of density functional theory calculations. For that purpose, two different comparisons are established: (i) the behavior of Li+ and K+ when adsorbed onto the basal plane of graphene and (ii) the differences between Li+ approaching the carbon surface from the basal plane and being intercalated through the edge plane of trilayer graphene. In the first case, it is found that the metal ions must overcome high energy barriers due to their interaction with the ionic liquid before reaching an equilibrium position close to the interface. In addition, no significant charge transfer between any of the metals and graphene takes place until very close energetically unfavorable distances. The second configuration shows that Li+ has no equilibrium position in the proximity of the interface but instead has an equilibrium position when it is inside the electrode for which it has to cross an energy barrier. In this case, the formation of a LiC12 complex is observed since the charge transfer at the equilibrium distance is achieved to a considerable extent. Thus, the interfacial charge transfer resistance on the electrode in energy devices based on ionic liquids clearly depends not only on the binding of the ionic liquid to the metal cations and their ability to form a dense solvation shell around them but also on the surface topography and its effect on the ion packing on the surface.

3.
J Phys Chem B ; 123(49): 10514-10521, 2019 Dec 12.
Article in English | MEDLINE | ID: mdl-31726827

ABSTRACT

Water-in-salts are a new family of electrolytes that may allow the development of aqueous Li-ion batteries. They have a structure that is reminiscent of ionic liquids, and they are characterized by a high concentration of ionic species. In this work, we study their transport properties and how they evolve with concentration by using molecular dynamic simulations. We first focus on the choice of the force field. By comparing the simulated viscosities and self-diffusion coefficients with experimental measurements, we select a set of parameters that reproduces well the transport properties. We then use the selected force field to study in detail the variations of the self and collective diffusivities of all the species as well as the transport number of the lithium ion. We show that correlations between ions and water play an important role over the whole concentration range. In the water-in-salt regime, the anions form a percolating network that reduces the cation-anion correlations and leads to rather large values for the transport number compared to other standard electrolytes.

4.
J Phys Condens Matter ; 28(46): 464001, 2016 11 23.
Article in English | MEDLINE | ID: mdl-27623714

ABSTRACT

This work describes the behaviour of water molecules in 1-butyl-3-methylimidazolium tetrafluoroborate ionic liquid under nanoconfinement, between graphene sheets. By means of molecular dynamics simulations, the adsorption of water molecules at the graphene surface is studied. A depletion of water molecules in the vicinity of the neutral and negatively charged graphene surfaces, and their adsorption at the positively charged surface are observed in line with the preferential hydration of the ionic liquid anions. The findings are appropriately described using a two-level statistical model. The confinement effect on the structure and dynamics of the mixtures is thoroughly analyzed using the density and the potential of mean force profiles, as well as by the vibrational densities of the states of water molecules near the graphene surface. The orientation of water molecules and the water-induced structural transitions in the layer closest to the graphene surface are also discussed.

5.
J Phys Chem B ; 116(36): 11302-12, 2012 Sep 13.
Article in English | MEDLINE | ID: mdl-22947013

ABSTRACT

We report a systematic study of the effect of the cationic chain length and degree of hydrogen bonding on several equilibrium and transport properties of the first members of the alkylammonium nitrate protic ionic liquids (PILs) family (ethylammonium, propylammonium, and butylammonium nitrate) in the temperature range between 10 and 40 °C. These properties were observed by means of several experimental techniques, including density, surface tension, refractometry, viscosimetry, and conductimetry. The dilatation coefficients and compressibilities, as well as the Rao coefficients, were calculated, and an increase of these magnitudes with alkyl chain length was detected. Moreover, the surface entropies and enthalpies of the studied PILs were analyzed, and the temperature dependence of the surface tension was observed to be describable by means of a harmonic oscillator model with surface energies and critical temperatures that are increasing functions of the cationic chain length. Moreover, the refractive indexes were measured and the thermo-optic coefficient and Abbe numbers were calculated, and the contribution of the electrostrictive part seemed to dominate the temperature dependence of the electric polarization. The electric conductivity and the viscosity were measured and the influence of the degree of hydrogen bonding in the supercooled liquid region analyzed. Hysteresis loops were detected in freezing-melting cycles and the effect of the length of the alkyl chain of the cation on the size of the loop analyzed, showing that longer chains lead to a narrowing of the supercooled region. The temperature dependence of the conductivity was studied in the Vogel-Fulcher-Tamman (VFT) framework and the fragility indices, the effective activation energies, and the Vogel temperatures obtained. A high-temperature Arrhenius analysis was also performed, and the activation energies of conductivity and viscosity were calculated, showing that these transport processes are governed by two distinct mechanisms. The exponents of the fractional Walden rule for the different compounds were obtained. Finally, the ionicities and fragilities of the studied PILs were analyzed, proving that all the studied PILs are subionic and fragile liquids, with propylammonium nitrate showing the lowest fragility and the greater ionicity of all the studied compounds.

6.
J Phys Chem B ; 115(38): 11170-82, 2011 Sep 29.
Article in English | MEDLINE | ID: mdl-21899260

ABSTRACT

In this work, extensive molecular dynamics simulations of mixtures of alcohols of several chain lengths (methanol and ethanol) with the ionic liquids (ILs) composed of the cation 1-hexyl-3-methylimidazolium and several anions of different hydrophobicity degrees (Cl(-), BF(4)(-), PF(6)(-)) are reported. We analyze the influence of the nature of the anion, the length of the molecular chain of the alcohol, and the alcohol concentration on the thermodynamic and structural properties of the mixtures. Densities, excess molar volumes, total and partial radial distribution functions, coordination numbers, and hydrogen bond degrees are reported and analyzed for mixtures of the ILs with methanol and ethanol. The aggregation process is shown to be highly dependent on the nature of the anion and the size of the alcohol, since alcohol molecules tend to interact predominantly with the anionic part of the IL, especially in mixtures of the halogenated IL with methanol. Particularly, our results suggest that the formation of an apolar network similar to that previously reported in mixtures of ILs with water does not take place in mixtures with alcohol when the chloride anion is present, the alcohol molecules being instead homogeneously distributed in the polar network of IL. Moreover, the alcohol clusters formed in mixtures of [HMIM][PF(6)] with alcohol were found to have a smaller size than in mixtures with water. Additionally, we provide a semiquantitative analysis of the dependence of the hydrogen bonding degree of the mixtures on the alcohol concentration.

7.
J Phys Chem B ; 115(25): 8145-54, 2011 Jun 30.
Article in English | MEDLINE | ID: mdl-21648424

ABSTRACT

The existence and properties of mesoscopic self-assembly structures formed by surfactants in protic ionic liquid solutions are reported. Micellar aggregates of n-alkyltrimethylammonium (n = 10, 12, 14, 16) chlorides and bromides and of n-alkylpyridinium (n = 12, 16) chlorides in ethylammonium nitrate and propylammonium nitrate were observed by means of several experimental techniques, including surface tension, transmission electron micrography, dynamic light scattering, and potentiometry using surfactant-selective electrodes. The effect of the alkyl chain length of both solute and solvent molecules on the critical micelle concentration is discussed, and a Stauff-Klevens law is seen to apply to surfactant solutions in both protic ionic liquids. The counterion role is also a matter of study in the case of alkyltrimethylammonium-based surfactants, and the presently reported evidence suggests that the place of the surfactant counterion in the Hoffmeister's series could determine its effect on micellization in IL solution. The size distribution of the aggregates is also analyzed together with the Gibbs free energies of micellization and the minimum surface area per monomer in all of the studied cases. All of the hereby reported evidence suggests that the negative entropic contribution arising from the release of the solvent layer upon micellization is also the driving force of conventional surfactant self-association in protic ionic liquids.

SELECTION OF CITATIONS
SEARCH DETAIL
...