Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Pol J Microbiol ; 70(1): 99-106, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33815531

ABSTRACT

Campylobacter fetus subsp. fetus is the causal agent of sporadic abortion in bovines and infertility that produces economic losses in livestock. In many infectious diseases, the immune response has an important role in limiting the invasion and proliferation of bacterial pathogens. Innate immune sensing of microorganisms is mediated by pattern-recognition receptors (PRRs) that identify pathogen-associated molecular patterns (PAMPs) and induces the secretion of several proinflammatory cytokines, like IL-1ß, TNF-α, and IL-8. In this study, the expression of IL-1ß, TNF-α, IL-8, and IFN-γ in bovine endometrial epithelial cells infected with C. fetus and Salmonella Typhimurium (a bacterial invasion control) was analyzed. The results showed that expression levels of IL-1ß and IL-8 were high at the beginning of the infection and decreased throughout the intracellular period. Unlike in this same assay, the expression levels of IFN-γ increased through time and reached the highest peak at 4 hours post infection. In cells infected with S. Typhimurium, the results showed that IL8 expression levels were highly induced by infection but not IFN-γ. In cells infected with S. Typhimurium or C. fetus subsp. fetus, the results showed that TNF-α expression did not show any change during infection. A cytoskeleton inhibition assay was performed to determine if cytokine expression was modified by C. fetus subsp. fetus intracellular invasion. IL-1ß and IL-8 expression were downregulated when an intracellular invasion was avoided. The results obtained in this study suggest that bovine endometrial epithelial cells could recognize C. fetus subsp. fetus resulting in early proinflammatory response.


Subject(s)
Campylobacter Infections/veterinary , Campylobacter/physiology , Cattle Diseases/immunology , Endometrium/immunology , Epithelial Cells/immunology , Animals , Campylobacter/genetics , Campylobacter Infections/genetics , Campylobacter Infections/immunology , Campylobacter Infections/microbiology , Cattle , Cattle Diseases/genetics , Cattle Diseases/microbiology , Cytokines/genetics , Cytokines/immunology , Endometrium/microbiology , Epithelial Cells/microbiology , Female , Host-Pathogen Interactions
2.
Front Vet Sci ; 7: 623710, 2020.
Article in English | MEDLINE | ID: mdl-33575280

ABSTRACT

A polyherbal feed mixture containing (Achyrantes aspera, Trachyspermum ammi, Citrullus colocynthis, Andrographis paniculata, and Azadirachta indica) was evaluated in growing calves through blood chemistry, blood biometry, and gene expression during the pre-ruminant to weaning period. Forty Holstein calves (initial BW 45.6 ± 3.2 kg; 22.8 ± 0.9 days post birth) from a dairy farm were randomly assigned to the following treatments: 0, 3, 4, and 5 g/d of a polyherbal mixture, dosed in colloid gels with gelatin. Calves were housed in individual outdoor boxes with ad libitum access to a 21.5% CP calf starter and water and fed individually with a mixture of milk and a non-medicated milk replacer (22% CP). Blood samples were collected on day 59 for blood chemistry, blood biometry, and gene expression analysis in leukocyte through microarray assays. Immunoglobulins were quantified by enzyme-linked immunosorbent assay. The animals treated with the polyherbal mixture showed a quadratic effect on final body weight, daily weight gain, final hip height, and final thoracic girth. The best performance results were obtained with a treatment dose of 4 g/d. The serum IgG increased linearly with the treatment doses. Gene set enrichment analysis of upregulated genes revealed that the three biological processes with higher fold change were tight junction, mucin type O-Glycan biosynthesis, and intestinal immune network for IgA production. Also, these upregulated genes influenced arachidonic acid metabolism, and pantothenate and CoA biosynthesis. Gene ontology enrichment analysis indicated that the pathways enriched were PELP1 estrogen receptor interacting protein pathways, nuclear receptors in lipid metabolism and toxicity, tight junction, ECM-receptor interaction, thyroid hormone signaling pathways, vascular smooth muscle contraction, ribosome function, glutamatergic synapse pathway, focal adhesion, Hippo, calcium, and MAPK signaling pathways.

3.
Pol J Microbiol ; 68(2): 217-224, 2019.
Article in English | MEDLINE | ID: mdl-31250592

ABSTRACT

Campylobacter fetus is an important venereal pathogen of cattle that causes infertility and abortions. It is transmitted during mating, and it travels from the vagina to the uterus; therefore, an important cell type that interacts with C. fetus are endometrial epithelial cells. Several virulence factors have been identified in the genome of C. fetus, such as adhesins, secretion systems, and antiphagocytic layers, but their expression is unknown. The ability of C. fetus to invade human epithelial cells has been demonstrated, but the ability of this microorganism to infect bovine endometrial epithelial cells has not been demonstrated. Bovine endometrial epithelial cells were isolated and challenged with C. fetus. The presence of C. fetus inside the endometrial epithelial cells was confirmed by the confocal immunofluorescence. C. fetus was not internalized when actin polymerization was disturbed, suggesting cytoskeleton participation in an internalization mechanism. To evaluate the intracellular survival of C. fetus, a gentamicin protection assay was performed. Although C. fetus was able to invade epithelial cells, the results showed that it did not have the capacity to survive in the intracellular environment. This study reports for the first time, the ability of C. fetus to invade bovine endometrial epithelial cells, and actin participation in this phenomenon.Campylobacter fetus is an important venereal pathogen of cattle that causes infertility and abortions. It is transmitted during mating, and it travels from the vagina to the uterus; therefore, an important cell type that interacts with C. fetus are endometrial epithelial cells. Several virulence factors have been identified in the genome of C. fetus, such as adhesins, secretion systems, and antiphagocytic layers, but their expression is unknown. The ability of C. fetus to invade human epithelial cells has been demonstrated, but the ability of this microorganism to infect bovine endometrial epithelial cells has not been demonstrated. Bovine endometrial epithelial cells were isolated and challenged with C. fetus. The presence of C. fetus inside the endometrial epithelial cells was confirmed by the confocal immunofluorescence. C. fetus was not internalized when actin polymerization was disturbed, suggesting cytoskeleton participation in an internalization mechanism. To evaluate the intracellular survival of C. fetus, a gentamicin protection assay was performed. Although C. fetus was able to invade epithelial cells, the results showed that it did not have the capacity to survive in the intracellular environment. This study reports for the first time, the ability of C. fetus to invade bovine endometrial epithelial cells, and actin participation in this phenomenon.


Subject(s)
Campylobacter Infections/microbiology , Campylobacter fetus/physiology , Endocytosis , Epithelial Cells/microbiology , Actins/metabolism , Animals , Anti-Bacterial Agents/pharmacology , Cattle , Cattle Diseases , Cells, Cultured , Gentamicins/pharmacology , Microbial Viability/drug effects , Microscopy, Confocal , Microscopy, Fluorescence , Models, Biological
SELECTION OF CITATIONS
SEARCH DETAIL
...