Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Phys Chem Chem Phys ; 25(42): 28911-28924, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37855156

ABSTRACT

Dispersions of charged maghemite nanoparticles (NPs) in EAN (ethylammonium nitrate) a reference Ionic Liquid (IL) are studied here using a number of static and dynamical experimental techniques; small angle scattering (SAS) of X-rays and of neutrons, dynamical light scattering and forced Rayleigh scattering. Particular insight is provided regarding the importance of tuning the ionic species present at the NP/IL interface. In this work we compare the effect of Li+, Na+ or Rb+ ions. Here, the nature of these species has a clear influence on the short-range spatial organisation of the ions at the interface and thus on the colloidal stability of the dispersions, governing both the NP/NP and NP/IL interactions, which are both evaluated here. The overall NP/NP interaction is either attractive or repulsive. It is characterised by determining, thanks to the SAS techniques, the second virial coefficient A2, which is found to be independent of temperature. The NP/IL interaction is featured by the dynamical effective charge ξeff0 of the NPs and by their entropy of transfer SNP (or equivalently their heat of transport ) determined here thanks to thermoelectric and thermodiffusive measurements. For repulsive systems, an activated process rules the temperature dependence of these two latter quantities.

2.
J Colloid Interface Sci ; 607(Pt 1): 584-594, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34509733

ABSTRACT

HYPOTHESIS: Some of the most promising fields of application of ionic liquid-based colloids imply elevated temperatures. Their careful design and analysis is therefore essential. We assume that tuning the structure of the nanoparticle-ionic liquid interface through its composition can ensure colloidal stability for a wide temperature range, from room temperature up to 200 °C. EXPERIMENTS: The system under study consists of iron oxide nanoparticles (NPs) dispersed in ethylmethylimidazolium bistriflimide (EMIM TFSI). The key parameters of the solid-liquid interface, tuned at room temperature, are the surface charge density and the nature of the counterions. The thermal stability of these nanoparticle dispersions is then analysed on the short and long term up to 200 °C. A multiscale analysis is performed combining dynamic light scattering (DLS), small angle X-ray/neutron scattering (SAXS/SANS) and thermogravimetric analysis (TGA). FINDINGS: Following the proposed approach with a careful choice of the species at the solid-liquid interface, ionic liquid-based colloidal dispersions of iron oxide NPs in EMIM TFSI stable over years at room temperature can be obtained, also stable at least over days up to 200 °C and NPs concentrations up to 12 vol% (≈30 wt%) thanks to few near-surface ionic layers.

3.
Soft Matter ; 17(17): 4566-4577, 2021 May 05.
Article in English | MEDLINE | ID: mdl-33949423

ABSTRACT

Ferrofluids based on maghemite nanoparticles (NPs), typically 10 nm in diameter, are dispersed in an ionic liquid (1-ethyl 3-methylimidazolium bistriflimide - EMIM-TFSI). The average interparticle interaction is found to be repulsive by small angle scattering of X-rays and of neutrons, with a second virial coefficient A2 = 7.3. A moderately concentrated sample at Φ = 5.95 vol% is probed by forced Rayleigh scattering under an applied magnetic field (up to H = 100 kA m-1) from room temperature up to T = 460 K. Irrespective of the values of H and T, the NPs in this study are always found to migrate towards the cold region. The in-field anisotropy of the mass diffusion coefficient Dm and that of the (always positive) Soret coefficient ST are well described by the presented model in the whole range of H and T. The main origin of anisotropy is the spatial inhomogeneities of concentration in the ferrofluid along the direction of the applied field. Since this effect originates from the magnetic dipolar interparticle interaction, the anisotropy of thermodiffusion progressively vanishes when temperature and thermal motion increase.

4.
Eur Phys J E Soft Matter ; 42(6): 72, 2019 Jun 11.
Article in English | MEDLINE | ID: mdl-31177408

ABSTRACT

Thermodiffusion properties at room temperature of colloidal dispersions of hydroxyl-coated nanoparticles (NPs) are probed in water, in dimethyl sulfoxide (DMSO) and in mixtures of water and DMSO at various proportions of water, [Formula: see text]. In these polar solvents, the positive NPs superficial charge imparts the systems with a strong electrostatic interparticle repulsion, slightly decreasing from water to DMSO, which is here probed by Small Angle Neutron Scattering and Dynamic Light Scattering. However if submitted to a gradient of temperature, the NPs dispersed in water with ClO4- counterions present a thermophilic behavior, the same NPs dispersed in DMSO with the same counterions present a thermophobic behavior. Mass diffusion coefficient [Formula: see text] and Ludwig-Soret coefficient [Formula: see text] are measured as a function of NP volume fraction [Formula: see text] at various [Formula: see text]. The [Formula: see text]-dependence of [Formula: see text] is analyzed in terms of thermoelectric and thermophoretic contributions as a function of [Formula: see text]. Using two different models for evaluating the Eastman entropy of transfer of the co- and counterions in the mixtures, the single-particle thermophoretic contribution (the NP's Eastman entropy of transfer) is deduced. It is found to evolve from negative in water to positive in DMSO. It is close to zero on a large range of [Formula: see text] values, meaning that in this [Formula: see text]-range [Formula: see text] largely depends on the thermoelectric effect of free co- and counterions.

5.
Phys Chem Chem Phys ; 21(4): 1895-1903, 2019 Jan 23.
Article in English | MEDLINE | ID: mdl-30632574

ABSTRACT

Under a temperature gradient, the direction of thermodiffusion of charged γ-Fe2O3 nanoparticles (NPs) depends on the nature of the counter-ions present in the dispersion, resulting in either a positive or negative Soret coefficient. Various counter-ions are probed in finely tuned and well characterized dispersions of citrate-coated NPs at comparable concentrations of free ionic species. The Soret coefficient ST is measured in stationary conditions together with the mass-diffusion coefficient Dm using a forced Rayleigh scattering method. The strong interparticle repulsion, determined by SAXS, is also attested by the increase of Dm with NP volume fraction Φ. The Φ-dependence of ST is analyzed in terms of thermophoretic and thermoelectric contributions of the various ionic species. The obtained single-particle thermophoretic contribution of the NPs (the Eastman entropy of transfer sNP) varies linearly with the entropy of transfer of the counter-ions. This is understood in terms of electrostatic contribution and of hydration of the ionic shell surrounding the NPs. Two aqueous dispersions, respectively, with ST > 0 and with ST < 0 are then probed under an applied field H[combining right harpoon above], and an anisotropy of Dm and of ST is induced while the in-field system remains monophasic. Whatever the H[combining right harpoon above]-direction (parallel or perpendicular to the gradients and ), the Soret coefficient is modulated keeping the same sign as in zero applied field. In-field experimental determinations are well described using a mean field model of the interparticle magnetic interaction.

6.
Phys Chem Chem Phys ; 20(24): 16402-16413, 2018 Jun 20.
Article in English | MEDLINE | ID: mdl-29873364

ABSTRACT

Thermodiffusion of different ferrite nanoparticles (NPs), ∼10 nm in diameter, is explored in tailor-made aqueous dispersions stabilized by electrostatic interparticle interactions. In the dispersions, electrosteric repulsion is the dominant force, which is tuned by an osmotic-stress technique, i.e. controlling of osmotic pressure Π, pH and ionic strength. It is then possible to map Π and the NPs' osmotic compressibility χ in the dispersion with a Carnahan-Starling formalism of effective hard spheres (larger than the NPs' core). The NPs are here dispersed with two different surface ionic species, either at pH ∼ 2 or 7, leading to a surface charge, either positive or negative. Their Ludwig-Soret ST coefficient together with their mass diffusion Dm coefficient are determined experimentally by forced Rayleigh scattering. All probed NPs display a thermophilic behavior (ST < 0) regardless of the ionic species used to cover the surface. We determine the NPs' Eastman entropy of transfer and the Seebeck (thermoelectric) contribution to the measured Ludwig-Soret coefficient in these ionic dispersions. The NPs' Eastman entropy of transfer sNP is interpreted through the electrostatic and hydration contributions of the ionic shell surrounding the NPs.

7.
J Chem Phys ; 143(5): 054902, 2015 Aug 07.
Article in English | MEDLINE | ID: mdl-26254665

ABSTRACT

The Seebeck and Soret coefficients of ionically stabilized suspension of maghemite nanoparticles in dimethyl sulfoxide are experimentally studied as a function of nanoparticle volume fraction. In the presence of a temperature gradient, the charged colloidal nanoparticles experience both thermal drift due to their interactions with the solvent and electric forces proportional to the internal thermoelectric field. The resulting thermodiffusion of nanoparticles is observed through forced Rayleigh scattering measurements, while the thermoelectric field is accessed through voltage measurements in a thermocell. Both techniques provide independent estimates of nanoparticle's entropy of transfer as high as 82 meV K(-1). Such a property may be used to improve the thermoelectric coefficients in liquid thermocells.

8.
Phys Chem Chem Phys ; 17(17): 11779-89, 2015 May 07.
Article in English | MEDLINE | ID: mdl-25870029

ABSTRACT

The electric signal induced by an ultrasonic wave in aqueous solutions of charged species is measured and analyzed. A device is developed which measures the raw induced electric signal for small sample volumes (few milliliters) and without any preceding calibration. The potential difference generated between two identical electrodes, called the ionic vibration potential (IVP), is thus easily deduced. In parallel, a theory for the IVP is built based on a robust analytical theory already used successfully to account for other transport coefficients in electrolyte solutions. From the analysis of the IVP measured for several aqueous electrolyte solutions, which are well-defined model systems for this technique, we explain and validate the different contributions to the signal. In particular, the non-ideal effects at high concentrations are thoroughly understood. A first step towards colloidal systems is presented by the analysis of the signal in solutions of a polyoxometallate salt, opening the possibility of determinations of reliable electrophoretic mobilities in dispersions of nanoobjects.

9.
Article in English | MEDLINE | ID: mdl-24229301

ABSTRACT

The dynamics of particles in solution or suspension is influenced by thermal fluctuations and hydrodynamic interactions. Several mesoscale methods exist to account for these solvent-induced effects such as Brownian dynamics with hydrodynamic interactions and hybrid molecular dynamics-stochastic rotation dynamics methods. Here we compare two ways of coupling solutes to the solvent with stochastic rotation dynamics (SRD) to Brownian dynamics with and without explicit hydrodynamic interactions. In the first SRD scheme [SRD with collisional coupling (CC)] the solutes participate in the collisional step with the solvent and in the second scheme [SRD with central force coupling (CFC)] the solutes interact through direct forces with the solvent, generating slip boundary conditions. We compare the transport coefficients of neutral and charged solutes in a model system obtained by these simulation schemes. Brownian dynamics without hydrodynamic interactions is used as a reference to quantify the influence of hydrodynamics on the transport coefficients as modeled by the different methods. We show that, in the dilute range, the SRD CFC method provides results similar to those of Brownian dynamics with hydrodynamic interactions for the diffusion coefficients and for the electrical conductivity. The SRD CC scheme predicts diffusion coefficients close to those obtained by Brownian dynamic simulations without hydrodynamic interactions, but accounts for part of the influence of hydrodynamics on the electrical conductivity.

10.
J Chem Phys ; 123(14): 144915, 2005 Oct 08.
Article in English | MEDLINE | ID: mdl-16238432

ABSTRACT

Brownian dynamics simulations are used to investigate the dynamics of orientational properties of real charge-stabilized ferrofluids, i.e. stable colloidal dispersions of magnetic nanoparticles. The relaxation times of the magnetization and of the birefringence, data accessible by experimental techniques, have been computed at several volume fractions. Besides, the effect of hydrodynamic interactions has been investigated. Equilibrium simulations without field are found to be inadequate to determine the aforementioned relaxation times for the systems under study, the dipolar interaction being too weak. Thus a nonequilibrium simulation procedure that mimics the experimental operating mode has been developed. After equilibrium simulations under a magnetic field, both birefringence and magnetization decays are recorded once the field is suppressed. Birefringence and magnetization decays are markedly impeded as the volume fraction increases, whereas they are barely enhanced when the intensity of the initial magnetic field is increased at a fixed volume fraction. Eventually, hydrodynamic interactions exhibit a slight but systematic lengthening of the relaxation times.

11.
J Chem Phys ; 121(12): 6078-85, 2004 Sep 22.
Article in English | MEDLINE | ID: mdl-15367036

ABSTRACT

We present Brownian dynamics simulations of real charge-stabilized ferrofluids, which are stable colloidal dispersions of magnetic nanoparticles, with and without the presence of an external magnetic field. The colloidal suspensions are treated as collections of monodisperse spherical particles, bearing point dipoles at their centers and undergoing translational and rotational Brownian motions. The overall repulsive isotropic interactions between particles, governed by electrostatic repulsions, are taken into account by a one-component effective pair interaction potential. The potential parameters are fitted in order that computed structure factors are close to the experimental ones. Two samples of ferrofluid differing by the particle diameter and consequently by the intensity of the magnetic interaction are considered here. The magnetization and birefringence curves are computed: a deviation from the ideal Langevin behaviors is observed if the dipolar moment of particles is sufficiently large. Structure factors are also computed from simulations with and without an applied magnetic field H: the microstructure of the repulsive ferrofluid becomes anisotropic under H. Even our simple modeling of the suspension allows us to account for the main experimental features: an increase of the peak intensity is observed in the direction perpendicular to the field whereas the peak intensity decreases in the direction parallel to the field.

SELECTION OF CITATIONS
SEARCH DETAIL
...