Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Nanoscale ; 15(2): 573-577, 2023 Jan 05.
Article in English | MEDLINE | ID: mdl-36515145

ABSTRACT

Patchy particles have received great attention due to their ability to develop directional and selective interactions and serve as building units for the self-assembly of innovative colloidal molecules and crystalline structures. Although synthesizing particles with multiple dissimilar patches is still highly challenging and lacks efficient methods, these building blocks would open paths towards a broader range of ordered materials with inherent properties. Herein, we describe a new approach to pattern functional DNA patches at the surface of particles, by the use of colloidal stamps. DNA inks are transferred only at the contact zones between the target particles and the stamps thanks to selective strand-displacement reactions. The produced DNA-patchy particles are ideal candidates to act as advanced precision/designer building blocks to self-assemble the next generation of colloidal materials.


Subject(s)
Colloids , DNA , Colloids/chemistry , DNA/chemistry
2.
ACS Nano ; 14(12): 16525-16534, 2020 Dec 22.
Article in English | MEDLINE | ID: mdl-32790330

ABSTRACT

Natural structural materials frequently consist of multimaterial nanocomposites with complex superstructure giving rise to exceptional mechanical properties, but also commonly preventing access to their synthetic reproduction. Here we present the spin-assisted layer-by-layer assembly of anisotropic wood-inspired films composed of anionic cellulose nanofibrils and cationic poly(vinyl amine) possessing a tensile strength that exceeds that of the wood from which the fibers originate. The degree of orientation of the nanofibrils was studied by atomic force microscopy and depends strongly on the distance from the center of the spun surface. The nanofibrils are preferentially aligned in the direction of the shear flow, and consequently, the mechanical properties of such films differ substantially when measured parallel and perpendicular to the fibril orientation direction. For enabling a diversity of bioinspired applications including sensing, packaging, electronics, or optics, the preparation of nanocomposite materials and devices with anisotropic physical properties requires an extreme level of control over the positioning and alignment of nanoscale objects within the matrix material.

3.
Chem Soc Rev ; 49(6): 1955-1976, 2020 Mar 21.
Article in English | MEDLINE | ID: mdl-32108182

ABSTRACT

This review describes the latest advances in the synthesis and assembly of specific colloids such as the colloidal molecules as defined by van Blaaderen in 2003 and the patchy particles imagined a few years later. The two concepts are closely related because some may serve as precursors of others and vice versa. To best mimic the molecular structures, it is necessary to introduce the notions of directed binding and valence which result in the concept of patches arranged on the particle surface according to the conventional repulsion figures. The assembly of patchy particles has made it possible to reconstitute molecules and macromolecules of simple geometry. But the existence of extended assemblies of larger dimensions has been demonstrated mostly by simulation and it struggles experimentally with the purity of the batches of building blocks.

4.
Chem Asian J ; 14(19): 3232-3239, 2019 Oct 01.
Article in English | MEDLINE | ID: mdl-31436370

ABSTRACT

The synthesis and study of colloidal molecules, that is to say clusters of a small number of colloidal entities that resemble the configuration of atoms in molecules both in constituent size and angular arrangement to that of valence shell electron pair repulsion model-related space-filling geometries, are of continued and significant interest. The rapid development in this research area has attracted intense interest from researchers with diverse expertise, and numerous methods towards the synthesis of colloidal molecules have been reported. In this Minireview, we attempt to give an overview of these latest developments, classifying them in processes based on controlled phase separation phenomena, on controlled surface nucleation and growth, and on controlled clustering. We also discuss the potential use of colloidal molecules as building blocks to fabricate new hierarchically organized superstructures and functional materials.

5.
Nat Commun ; 10(1): 528, 2019 01 31.
Article in English | MEDLINE | ID: mdl-30705271

ABSTRACT

Mechanosensing systems are ubiquitous in nature and control many functions from cell spreading to wound healing. Biologic systems typically rely on supramolecular transformations and secondary reporter systems to sense weak forces. By contrast, synthetic mechanosensitive materials often use covalent transformations of chromophores, serving both as force sensor and reporter, which hinders orthogonal engineering of their sensitivity, response and modularity. Here, we introduce FRET-based, rationally tunable DNA tension probes into macroscopic 3D all-DNA hydrogels to prepare mechanofluorescent materials with programmable sacrificial bonds and stress relaxation. This design addresses current limitations of mechanochromic system by offering spatiotemporal resolution, as well as quantitative and modular force sensing in soft hydrogels. The programmable force probe design further grants temporal control over the recovery of the mechanofluorescence during stress relaxation, enabling reversible and irreversible strain sensing. We show proof-of-concept applications to study strain fields in composites and to visualize freezing-induced strain patterns in homogeneous hydrogels.


Subject(s)
DNA/chemistry , Hydrogels/chemistry , Thermodynamics
6.
Nat Nanotechnol ; 13(8): 730-738, 2018 08.
Article in English | MEDLINE | ID: mdl-29941888

ABSTRACT

DNA has traditionally been used for the programmable design of nanostructures by exploiting its sequence-defined supramolecular recognition. However, control on larger length scales or even hierarchical materials that translate to the macroscale remain difficult to construct. Here, we show that the polymer character of single-stranded DNA (ssDNA) can be activated via a nucleobase-specific lower critical solution temperature, which provides a unique access to mesoscale structuring mechanisms on larger length scales. We integrate both effects into ssDNA multiblock copolymers that code sequences for phase separation, hybridization and functionalization. Kinetic pathway guidance using temperature ramps balances the counteracting mesoscale phase separation during heating with nanoscale duplex recognition during cooling to yield a diversity of complex all-DNA colloids with control over the internal dynamics and of their superstructures. Our approach provides a facile and versatile platform to add mesostructural layers into hierarchical all-DNA materials. The high density of addressable ssDNA blocks opens routes for applications such as gene delivery, artificial evolution or spatially encoded (bio)materials.


Subject(s)
Colloids/chemistry , DNA/chemistry , Nanostructures/chemistry , Base Sequence , DNA, Single-Stranded/chemistry , Gels/chemistry , Gold/chemistry , Light , Metal Nanoparticles/chemistry , Metal Nanoparticles/ultrastructure , Nanostructures/ultrastructure , Nanotechnology/methods , Phase Transition , Temperature
7.
Adv Mater ; 29(17)2017 May.
Article in English | MEDLINE | ID: mdl-28221714

ABSTRACT

Soft photonic materials are important for sensors, displays, or energy management and have become switchable under static equilibrium conditions by integration of responsive polymer features. The next step is to equip such materials with the ability for autonomously dynamic and self-regulating behavior, which would advance their functionality and application possibilities to new levels. Here, this study shows the system integration of a nonlinear, biocatalytic pH-feedback system with a pH-responsive block copolymer photonic gel, and demonstrates autonomous transient memories, remotely controlled signal propagation, and sensing. This study utilizes an enzymatic switch to program the lifetime of the reflective state of a photonic gel, and induces propagation of pH-waves extinguishable by illumination with UV-light. The described combination of nonlinear chemistry and responsive photonic gels opens pathways toward out-of-equilibrium photonic devices with active and autonomous behavior useful for sensing, computation, and communication.

8.
Chem Soc Rev ; 46(18): 5588-5619, 2017 Sep 18.
Article in English | MEDLINE | ID: mdl-28134366

ABSTRACT

Bioinspired out-of-equilibrium systems will set the scene for the next generation of molecular materials with active, adaptive, autonomous, emergent and intelligent behavior. Indeed life provides the best demonstrations of complex and functional out-of-equilibrium systems: cells keep track of time, communicate, move, adapt, evolve and replicate continuously. Stirred by the understanding of biological principles, artificial out-of-equilibrium systems are emerging in many fields of soft matter science. Here we put in perspective the molecular mechanisms driving biological functions with the ones driving synthetic molecular systems. Focusing on principles that enable new levels of functionalities (temporal control, autonomous structures, motion and work generation, information processing) rather than on specific material classes, we outline key cross-disciplinary concepts that emerge in this challenging field. Ultimately, the goal is to inspire and support new generations of autonomous and adaptive molecular devices fueled by self-regulating chemistry.

9.
Nano Lett ; 16(8): 5176-82, 2016 08 10.
Article in English | MEDLINE | ID: mdl-27455047

ABSTRACT

Nature provides design paradigms for adaptive, self-healing, and synergistic high-performance structural materials. Nacre's brick-and-mortar architecture is renowned for combining stiffness, toughness, strength, and lightweightness. Although elaborate approaches exist to mimic its static structure and performance, and to incorporate functionalities for the engineering world, there is a profound gap in addressing adaptable mechanical properties, particularly using remote, quick, and spatiotemporal triggers. Here, we demonstrate a generic approach to control the mechanical properties of nacre-inspired nanocomposites by designing a photothermal energy cascade using colloidal graphene as light-harvesting unit and coupling it to molecularly designed, thermoreversible, supramolecular bonds in the nanoconfined soft phase of polymer/nanoclay nacre-mimetics. The light intensity leads to adaptive steady-states balancing energy uptake and dissipation. It programs the mechanical properties and switches the materials from high stiffness/strength to higher toughness within seconds under spatiotemporal control. We envisage possibilities beyond mechanical materials, for example, light-controlled (re)shaping or actuation in highly reinforced nanocomposites.

10.
ACS Appl Mater Interfaces ; 8(17): 11031-40, 2016 05 04.
Article in English | MEDLINE | ID: mdl-27067311

ABSTRACT

Natural composites are hierarchically structured by combination of ordered colloidal and molecular length scales. They inspire future, biomimetic, and lightweight nanocomposites, in which extraordinary mechanical properties are in reach by understanding and mastering hierarchical structure formation as tools to engineer multiscale deformation mechanisms. Here we describe a hierarchically self-assembled, cholesteric nanocomposite with well-defined colloid-based helical structure and supramolecular hydrogen bonds engineered on the molecular level in the polymer matrix. We use reversible addition-fragmentation transfer polymerization to synthesize well-defined hydrophilic, nonionic polymers with a varying functionalization density of 4-fold hydrogen-bonding ureidopyrimidinone (UPy) motifs. We show that these copolymers can be coassembled with cellulose nanocrystals (CNC), a sustainable, stiff, rod-like reinforcement, to give ordered cholesteric phases with characteristic photonic stop bands. The dimensions of the helical pitch are controlled by the ratio of polymer/CNC, confirming a smooth integration into the colloidal structure. With respect to the effect of the supramolecular motifs, we demonstrate that those regulate the swelling when exposing the biomimetic hybrids to water, and they allow engineering the photonic response. Moreover, the amount of hydrogen bonds and the polymer fraction are decisive in defining the mechanical properties. An Ashby plot comparing previous ordered CNC-based nanocomposites with our new hierarchical ones reveals that molecular engineering allows us to span an unprecedented mechanical property range from highest inelastic deformation (strain up to ∼13%) to highest stiffness (E ∼ 15 GPa) and combinations of both. We envisage that further rational design of the molecular interactions will provide efficient tools for enhancing the multifunctional property profiles of such bioinspired nanocomposites.


Subject(s)
Nanocomposites , Nanoparticles , Cellulose , Hydrogen Bonding , Polymers
11.
Angew Chem Int Ed Engl ; 55(20): 5966-70, 2016 05 10.
Article in English | MEDLINE | ID: mdl-27061218

ABSTRACT

Mechanical gradients are important as tough joints, for strain field engineering in printable electronics, for actuators, and for biological studies, yet they are difficult to prepare and quantitatively characterize. We demonstrate the additive fabrication of gradient bioinspired nanocomposites based on stiff, renewable cellulose nanofibrils that are bottom-up toughened via a tailor-made copolymer. Direct filament writing of different nanocomposite hydrogels in patterns, and subsequent healing of the filaments into continuous films while drying leads to a variety of linear, parabolic and striped bulk gradients. In situ digital image correlation under tensile deformation reveals important differences in the strain fields regarding asymmetry and step heights of the patterns. We envisage that merging top-down and bottom-up structuring of nanocellulose hybrids opens avenues for aperiodic and multiscale, bioinspired nanocomposites with optimized combinations of stiffness and toughness.

12.
Colloids Surf B Biointerfaces ; 139: 79-86, 2016 Mar 01.
Article in English | MEDLINE | ID: mdl-26700236

ABSTRACT

Layer-by-Layer (LbL) assemblies of heparin (Hep) and chitosan (Chi) were prepared for use as reservoirs for acidic and basic fibroblast growth factors (aFGFs and bFGFs, respectively). The effects of the architecture and composition of the reservoirs on the viability and proliferation of NIH-3T3 fibroblast cells were studied under starvation conditions. The reservoir stability was monitored by ellipsometry. The aFGF and bFGF loadings were determined using a dissipation-enhanced quartz crystal microbalance (QCM-D). Stability and release assays were performed in a phosphate buffer at physiological conditions. The results demonstrated that the amount of aFGF and bFGF loaded into and released from LbL reservoirs composed of 3 and 6 layer pairs could be controlled. Cell culture assays in low serum culture medium (LSCM) demonstrated that incorporating very small amounts of aFGF and bFGF into the (Hep/Chi)n multilayers significantly improved the proliferation of the NIH-3T3 fibroblasts. The cells did not proliferate on (Hep/Chi)n assemblies prepared in the absence of FGF under identical conditions. The LbL reservoirs were highly effective for the long-term storage (up to 9 months) of aFGF and bFGF. This work demonstrates the potential of LbL reservoirs for use as biomaterial coatings.


Subject(s)
Chitosan/chemistry , Delayed-Action Preparations/pharmacology , Fibroblast Growth Factor 1/pharmacology , Fibroblast Growth Factor 2/pharmacology , Heparin/chemistry , Animals , Cell Proliferation/drug effects , Cell Survival/drug effects , Delayed-Action Preparations/chemical synthesis , Delayed-Action Preparations/metabolism , Drug Compounding , Drug Liberation , Fibroblast Growth Factor 1/metabolism , Fibroblast Growth Factor 2/metabolism , Kinetics , Mice , NIH 3T3 Cells , Polyethyleneimine/chemistry
13.
ACS Nano ; 9(2): 1127-36, 2015 Feb 24.
Article in English | MEDLINE | ID: mdl-25590696

ABSTRACT

Nanocomposite films possessing multiple interesting properties (mechanical strength, optical transparency, self-healing, and partial biodegradability) are discussed. We used Layer-by-Layer assembly to prepare micron thick wood-inspired films from anionic nanofibrillated cellulose and cationic poly(vinyl amine). The film growth was carried out at different pH values to obtain films of different chemical composition, whereby, and as expected, higher pH values led to a higher polycation content and also to 6 times higher film growth increments (from 9 to 55 nm per layer pair). In the pH range from 8 to 11, micron thick and optically transparent LbL films are obtained by automated dipping when dried regularly in a stream of air. Films with a size of 10 cm(2) or more can be peeled from flat surfaces; they show tensile strengths up to about 250 MPa and Young's moduli up to about 18 GPa as controlled by the polycation/polyanion ratio of the film. Experiments at different humidities revealed the plasticizing effect of water in the films and allowed reversible switching of their mechanical properties. Whereas dry films are strong and brittle (Young's modulus: 16 GPa, strain at break: 1.7%), wet films are soft and ductile (Young's modulus: 0.1 GPa, strain at break: 49%). Wet film surfaces even amalgamate upon contact to yield mechanically stable junctions. We attribute the switchability of the mechanical properties and the propensity for self-repair to changes in the polycation mobility that are brought about by the plastifying effect of water.


Subject(s)
Biomimetic Materials/chemistry , Cellulose/chemistry , Mechanical Phenomena , Nanocomposites/chemistry , Optical Phenomena , Wood , Hydrogen-Ion Concentration , Plasticizers/chemistry , Surface Properties , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...