Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biochem Pharmacol ; 175: 113865, 2020 05.
Article in English | MEDLINE | ID: mdl-32142727

ABSTRACT

Expression of the ABCG2 multidrug transporter is a marker of cancer stem cells and a predictor of recurrent malignant disease. Understanding how human ABCG2 expression is modulated by pharmacotherapy is crucial in guiding therapeutic recommendations and may aid rational drug development. Genome edited reporter cells are useful in investigating gene regulation and visualizing protein activity in live cells but require precise targeting to preserve native regulatory regions. Here, we describe a fluorescent reporter assay that allows the noninvasive assessment of ABCG2 regulation in human lung adenocarcinoma cells. Using CRISPR-Cas9 gene editing coupled with homology-directed repair, we targeted an EGFP coding sequence to the translational start site of ABCG2, generating ABCG2 knock-out and in situ tagged ABCG2 reporter cells. Using the engineered cell lines, we show that ABCG2 is upregulated by a number of anti-cancer medications, HDAC inhibitors, hypoxia-mimicking agents and glucocorticoids, supporting a model in which ABCG2 is under the control of a general stress response. To our knowledge, this is the first description of a fluorescent reporter assay system designed to follow the endogenous regulation of a human ABC transporter in live cells. The information gained may guide therapy recommendations and aid rational drug design.


Subject(s)
ATP Binding Cassette Transporter, Subfamily G, Member 2/genetics , CRISPR-Associated Protein 9/genetics , CRISPR-Cas Systems/genetics , Gene Editing/methods , Neoplasm Proteins/genetics , A549 Cells , Antineoplastic Agents/pharmacology , Cell Culture Techniques , Drug Resistance, Multiple/genetics , Drug Resistance, Neoplasm/genetics , ErbB Receptors/genetics , Gene Knock-In Techniques , Gene Knockdown Techniques , Genes, Reporter , Humans , Plasmids
2.
Int J Mol Sci ; 20(2)2019 Jan 19.
Article in English | MEDLINE | ID: mdl-30669446

ABSTRACT

Histones serve as protein spools for winding the DNA in the nucleosome. High variability of their post-translational modifications result in a unique code system often responsible for the pathomechanisms of epigenetics-based diseases. Decoding is performed by reader proteins via complex formation with the N-terminal peptide tails of histones. Determination of structures of histone-reader complexes would be a key to unravel the histone code and the design of new drugs. However, the large number of possible histone complex variations imposes a true challenge for experimental structure determination techniques. Calculation of such complexes is difficult due to considerable size and flexibility of peptides and the shallow binding surfaces of the readers. Moreover, location of the binding sites is often unknown, which requires a blind docking search over the entire surface of the target protein. To accelerate the work in this field, a new approach is presented for prediction of the structure of histone H3 peptide tails docked to their targets. Using a fragmenting protocol and a systematic blind docking method, a collection of well-positioned fragments of the H3 peptide is produced. After linking the fragments, reconstitution of anchoring regions of the target-bound H3 peptide conformations was possible. As a first attempt of combination of blind and fragment docking approaches, our new method is named fragment blind docking (FBD).


Subject(s)
Histone Code , Histones/chemistry , Histones/metabolism , Models, Molecular , Algorithms , Amino Acid Sequence , DNA/chemistry , DNA/metabolism , Ligands , Methylation , Molecular Structure , Peptides , Protein Binding , Protein Conformation , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...