Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS Genet ; 18(4): e1010145, 2022 04.
Article in English | MEDLINE | ID: mdl-35377889

ABSTRACT

The maintenance of a restricted pool of asymmetrically dividing stem cells is essential for tissue homeostasis. This process requires the control of mitotic progression that ensures the accurate chromosome segregation. In addition, this event is coupled to the asymmetric distribution of cell fate determinants in order to prevent stem cell amplification. How this coupling is regulated remains poorly described. Here, using asymmetrically dividing Drosophila neural stem cells (NSCs), we show that Polo kinase activity levels determine timely Cyclin B degradation and mitotic progression independent of the spindle assembly checkpoint (SAC). This event is mediated by the direct phosphorylation of Polo kinase by Aurora A at spindle poles and Aurora B kinases at centromeres. Furthermore, we show that Aurora A-dependent activation of Polo is the major event that promotes NSC polarization and together with the SAC prevents brain tumor growth. Altogether, our results show that an Aurora/Polo kinase module couples NSC mitotic progression and polarization for tissue homeostasis.


Subject(s)
Drosophila Proteins , Neoplasms , Protein Serine-Threonine Kinases , Animals , Aurora Kinase B/genetics , Aurora Kinase B/metabolism , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Drosophila/genetics , Drosophila/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , M Phase Cell Cycle Checkpoints/genetics , Mitosis/genetics , Neoplasms/metabolism , Phosphorylation/physiology , Protein Serine-Threonine Kinases/genetics , Spindle Apparatus/genetics , Spindle Apparatus/metabolism
2.
Curr Biol ; 31(4): 684-695.e6, 2021 02 22.
Article in English | MEDLINE | ID: mdl-33259793

ABSTRACT

Proper assembly of mitotic spindles requires microtubule nucleation not only at the centrosomes but also around chromatin. In this study, we found that the Drosophila tubulin-specific chaperone dTBCE is required for the enrichment of tubulin in the nuclear space after nuclear envelope breakdown and for subsequent promotion of spindle microtubule nucleation. These events depend on the CAP-Gly motif found in dTBCE and are regulated by Ran and lamin proteins. Our data suggest that during early mitosis, dTBCE and nuclear pore proteins become enriched in the nucleus, where they interact with the Ran GTPase to promote dynamic tubulin enrichment. We propose that this novel mechanism enhances microtubule nucleation around chromatin, thereby facilitating mitotic spindle assembly.


Subject(s)
Chromatin , Microtubules , Tubulin , Animals , Drosophila , Mitosis , Spindle Apparatus , Tubulin/genetics , Tubulin/metabolism
3.
J Cell Sci ; 133(7)2020 04 06.
Article in English | MEDLINE | ID: mdl-32094264

ABSTRACT

A novel 2,3-benzodiazepine-4 derivative, named 1g, has recently been shown to function as an anti-proliferative compound. We now show that it perturbs the formation of a functional mitotic spindle, inducing a spindle assembly checkpoint (SAC)-dependent arrest in human cells. Live analysis of individual microtubules indicates that 1g promotes a rapid and reversible reduction in microtubule growth. Unlike most anti-mitotic compounds, we found that 1g does not interfere directly with tubulin or perturb microtubule assembly in vitro The observation that 1g also triggers a SAC-dependent mitotic delay associated with chromosome segregation in Drosophila neural stem cells, suggests that it targets a conserved microtubule regulation module in humans and flies. Altogether, our results indicate that 1g is a novel promising anti-mitotic drug with the unique properties of altering microtubule growth and mitotic spindle organization.


Subject(s)
Benzodiazepines , Mitosis , Benzodiazepines/pharmacology , Humans , Microtubules , Spindle Apparatus , Tubulin/genetics
4.
Development ; 146(8)2019 04 17.
Article in English | MEDLINE | ID: mdl-30936181

ABSTRACT

Drosophila Ensconsin (also known as MAP7) controls spindle length, centrosome separation in brain neuroblasts (NBs) and asymmetric transport in oocytes. The control of spindle length by Ensconsin is Kinesin-1 independent but centrosome separation and oocyte transport require targeting of Kinesin-1 to microtubules by Ensconsin. However, the molecular mechanism used for this targeting remains unclear. Ensconsin contains a microtubule (MT)-binding domain (MBD) and a Kinesin-binding domain (KBD). Rescue experiments show that only full-length Ensconsin restores the spindle length phenotype. KBD expression rescues ensc centrosome separation defects in NBs, but not the fast oocyte streaming and the localization of Staufen and Gurken. Interestingly, the KBD can stimulate Kinesin-1 targeting to MTs in vivo and in vitro We propose that a KBD and Kinesin-1 complex is a minimal activation module that increases Kinesin-1 affinity for MTs. Addition of the MBD present in full-length Ensconsin allows this process to occur directly on the MT and triggers higher Kinesin-1 targeting. This dual regulation by Ensconsin is essential for optimal Kinesin-1 targeting to MTs in oocytes, but not in NBs, illustrating the importance of adapting Kinesin-1 recruitment to different biological contexts.


Subject(s)
Microtubule-Associated Proteins/metabolism , Microtubules/metabolism , Oocytes/metabolism , Animals , Centrosome/metabolism , Drosophila , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Gene Expression Regulation, Developmental , Neurons/cytology , Neurons/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...