Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Chemistry ; 30(29): e202400048, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38483823

ABSTRACT

Recently, the discovery of antimicrobial peptides (AMPs) as excellent candidates for overcoming antibiotic resistance has attracted significant attention. AMPs are short peptides active against bacteria, cancer cells, and viruses. It has been shown that the SARS-CoV-2 nucleocapsid protein (N-P) undergoes liquid-liquid phase separation in the presence of RNA, resulting in biocondensate formation. These biocondensates are crucial for viral replication as they concentrate the viral RNA with the host cell's protein machinery required for viral protein expression. Thus, N-P biocondensates are promising targets to block or slow down viral RNA transcription and consequently virion assembly. We investigated the ability of three AMPs to interfere with N-P/RNA condensates. Using microscopy techniques, supported by biophysical characterization, we found that the AMP LL-III partitions into the condensate, leading to clustering. Instead, the AMP CrACP1 partitions into the droplets without affecting their morphology but reducing their dynamics. Conversely, GKY20 leads to the formation of fibrillar structures after partitioning. It can be expected that such morphological transformation severely impairs the normal functionality of the N-P droplets and thus virion assembly. These results could pave the way for the development of a new class of AMP-based antiviral agents targeting biocondensates.


Subject(s)
Antimicrobial Peptides , Coronavirus Nucleocapsid Proteins , SARS-CoV-2 , SARS-CoV-2/drug effects , SARS-CoV-2/metabolism , Antimicrobial Peptides/chemistry , Antimicrobial Peptides/pharmacology , Coronavirus Nucleocapsid Proteins/chemistry , Coronavirus Nucleocapsid Proteins/metabolism , Humans , RNA, Viral/metabolism , RNA, Viral/chemistry , Phosphoproteins/chemistry , Phosphoproteins/metabolism , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Virus Replication/drug effects
2.
RSC Chem Biol ; 2(4): 1196-1200, 2021 Aug 05.
Article in English | MEDLINE | ID: mdl-34458831

ABSTRACT

The intrinsically disordered protein α-synuclein causes Parkinson's disease by forming toxic oligomeric aggregates inside neurons. Single-molecule FRET experiments revealed conformational changes of noncanonical DNA structures, such as i-motifs and hairpins, in the presence of α-synuclein. Volumetric analyses revealed differences in binding mode, which is also affected by cellular osmolytes.

3.
Phys Chem Chem Phys ; 23(9): 5370-5375, 2021 Mar 11.
Article in English | MEDLINE | ID: mdl-33645620

ABSTRACT

Liquid-liquid phase separation has been shown to promote the formation of functional membraneless organelles involved in various cellular processes, including metabolism, stress response and signal transduction. Protein LAF1 found in P-granules phase separates into liquid-like droplets by patterned electrostatic interactions between acidic and basic tracts in LAF1 and has been used as model system in this study. We show that signaling proteins, such as K-Ras4B, a small GTPase that acts as a molecular switch and regulates many cellular processes including proliferation, apoptosis and cell growth, can colocalize in LAF1 droplets. Colocalization is facilitated by electrostatic interactions between the positively charged polybasic domain of K-Ras4B and the negatively charged motifs of LAF1. The interaction partners B- and C-Raf of K-Ras4B can also be recruited to the liquid droplets. Upon contact with an anionic lipid bilayer membrane, the liquid droplets dissolve and K-Ras4B is released, forming nanoclusters in the lipid membrane. Considering the high tuneability of liquid-liquid phase separation in the cell, the colocalization of signaling proteins and their effector molecules in liquid droplets may provide an additional vehicle for regulating storage and transport of membrane-associated signaling proteins such as K-Ras4B and offer an alternative strategy for high-fidelity signal output.


Subject(s)
Lipid Bilayers/chemistry , Membrane Lipids/chemistry , Nanocapsules/chemistry , Proto-Oncogene Proteins p21(ras)/chemistry , Amino Acid Sequence , Biological Transport , Humans , Models, Molecular , Phase Transition , Protein Binding , Protein Conformation , Signal Transduction , Static Electricity
4.
J Am Chem Soc ; 142(43): 18299-18303, 2020 10 28.
Article in English | MEDLINE | ID: mdl-33075229

ABSTRACT

Research on Parkinson's disease most often focuses on the ability of the protein α-synuclein (α-syn) to form oligomers and amyloid fibrils, and how such species promote brain death. However, there are indications that α-syn also plays a gene-regulatory role in the cell nucleus. Noncanonical tetrahelical nucleic acids, G-quadruplexes (G4Q), and i-motifs have been shown to play an important role in the control of genomic events. Using the conformation-sensitive single-molecule Förster resonance energy transfer technique we show that monomeric and oligomeric α-syn affect G4Qs and i-motifs in a different way and lead to remodeling of their conformational substates. Aggregated α-syn destabilizes the G4Q leading to unfolding. In contrast, both monomeric and aggregated α-syn enhance folding of the i-motif sequence of telomeric DNA. Importantly, macromolecular crowding is able to partially rescue G4Q from unfolding.


Subject(s)
DNA/chemistry , Protein Aggregates , alpha-Synuclein/chemistry , Base Sequence , Fluorescence Resonance Energy Transfer , G-Quadruplexes , Nucleic Acid Conformation
5.
Chem Commun (Camb) ; 56(78): 11577-11580, 2020 Oct 01.
Article in English | MEDLINE | ID: mdl-32909564

ABSTRACT

In recent years, liquid-liquid phase separation (LLPS) has emerged as a key mechanism for intracellular organization. But there is rapidly growing evidence that LLPS may also be associated with a number of medical conditions, including neurodegenerative diseases, by acting as a modulator of pathological protein aggregation. Here we show how LLPS formed by the P-granule protein LAF-1 and RNA can be affected by antimicrobial peptides, such as LL-III, leading to enhanced formation of amorphous protein aggregates and the loss of droplet function as an efficient reaction center and organizational hub.


Subject(s)
Caenorhabditis elegans Proteins/metabolism , Pore Forming Cytotoxic Proteins/metabolism , RNA Helicases/metabolism , Animals , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/chemistry , Fluorescence Polarization , Fluorescent Dyes/chemistry , Phase Transition , Pore Forming Cytotoxic Proteins/chemistry , Protein Aggregates , RNA/chemistry , RNA/metabolism , RNA Helicases/chemistry , Sodium Chloride/chemistry
6.
Langmuir ; 36(21): 5944-5953, 2020 06 02.
Article in English | MEDLINE | ID: mdl-32390436

ABSTRACT

Activation of Raf kinases by the membrane-anchored protein K-Ras4B is a key step of cellular signal regulation. As a predominant variant of the Ras family, K-Ras4B has been considered to be a major drug target in cancer therapy. Therefore, an integrated study of Raf interaction with membrane-associated K-Ras4B is essential. While the Ras-binding domain (RBD) of Raf contains the main binding interface to K-Ras4B, its cysteine-rich domain (CRD) is thought to be responsible for its association with the membrane interface. We applied time-lapse tapping-mode atomic force microscopy to visualize and characterize the interaction of these binding motifs of A-, B-, and C-Raf isoforms with K-Ras4B in a raft-like anionic model biomembrane. However, we found that the RBDs of the Raf isomers are readily recruited to K-Ras4B nanoclusters in the lipid membrane, with different efficiencies. Unexpectedly and different from A-Raf-RBD, B- and C-Raf-RBD are able to bind markedly also directly to the lipid membrane. We also found that Raf-RBD-CRD is readily recruited to the K-Ras4B forming nanoclusters in the fluid membrane phase, with the CRD domains binding to the lipid interface. The K-Ras4B-nanoclusters are likely to enhance Raf binding and activate signaling by enriching the Raf proteins and facilitating formation of Raf dimers. Interestingly, A-, B-, and C-Raf-RBD-CRD are also able to bind directly to the heterogeneous membrane surrounding the K-Ras4B nanoclusters, which could potentially enhance the overall affinity to K-Ras4B in a Raf-isoform-dependent manner. Overall, these results provide new insights into the spatial organization of the membrane-associated Raf-Ras signaling module for the various Raf isoforms, which is important for understanding the activation of Raf kinases and required for the development of drugs against cancers through targeting Raf-Ras interactions.


Subject(s)
Lipids , Signal Transduction , Protein Binding , Protein Domains , Protein Isoforms
7.
Chemistry ; 26(48): 10987-10991, 2020 Aug 26.
Article in English | MEDLINE | ID: mdl-32453478

ABSTRACT

The effect of an amyloidogenic intrinsically disordered protein, α-synuclein, which is associated with Parkinson's disease (PD), on the conformational dynamics of a DNA hairpin (DNA-HP) was studied by employing the single-molecule Förster resonance energy transfer method. The open-to-closed conformational equilibrium of the DNA-HP is drastically affected by binding of monomeric α-synuclein to the loop region of the DNA-HP. Formation of a protein-bound intermediate conformation is fostered in the presence of an aqueous two-phase system mimicking intracellular liquid-liquid phase separation. Using pressure modulation, additional mechanistic information about the binding complex could be retrieved. Hence, in addition to toxic amyloid formation, α-synuclein may alter expression profiles of disease-modifying genes in PD. Furthermore, these findings might also have significant bearings on the understanding of the physiology of organisms thriving at high pressures in the deep sea.


Subject(s)
DNA/chemistry , Molecular Conformation , alpha-Synuclein/chemistry , Humans , Intrinsically Disordered Proteins/chemistry , Parkinson Disease
8.
Phys Chem Chem Phys ; 22(6): 3734-3743, 2020 Feb 14.
Article in English | MEDLINE | ID: mdl-32010904

ABSTRACT

The chaperonin system GroEL-GroES is present in all kingdoms of life and rescues proteins from improper folding and aggregation upon internal and external stress conditions, including high temperatures and pressures. Here, we set out to explore the thermo- and piezostability of GroEL, GroES and the GroEL-GroES complex in the presence of cosolvents, nucleotides and salts employing quantitative FTIR spectroscopy and small-angle X-ray scattering. Owing to its high biological relevance and lack of data, our focus was especially on the effect of pressure on the chaperonin system. The experimental results reveal that the GroEL-GroES complex is remarkably temperature stable with an unfolding temperature beyond 70 °C, which can still be slightly increased by compatible cosolutes like TMAO. Conversely, the pressure stability of GroEL and hence the GroEL-GroES complex is rather limited and much less than that of monomeric proteins. Whereas GroES is pressure stable up to ∼5 kbar, GroEl and the GroEl-GroES complex undergo minor structural changes already beyond 1 kbar, which can be attributed to a dissociation-induced conformational drift. Quite unexpectedly, no significant unfolding of GroEL is observed even up to 10 kbar, however, i.e., the subunits themselves are very pressure stable. As for the physiological relevance, the structural integrity of the chaperonin system is retained in a relatively narrow pressure range, from about 1 to 1000 bar, which is just the pressure range encountered by life on Earth.


Subject(s)
Chaperonin 10/chemistry , Chaperonin 60/chemistry , Environment , Pressure , Protein Stability , Temperature
9.
Chemistry ; 25(42): 9827-9833, 2019 Jul 25.
Article in English | MEDLINE | ID: mdl-31141233

ABSTRACT

Oncogenic Ras mutations occur in more than 30 % of human cancers. K-Ras4B is the most frequently mutated isoform of Ras proteins. Development of effective K-Ras4B inhibitors has been challenging, hence new approaches to inhibit this oncogenic protein are urgently required. The polybasic domain of K-Ras4B with its stretch of lysine residues is essential for its plasma membrane targeting and localization. Employing CD and fluorescence spectroscopy, confocal fluorescence, and atomic force microscopy we show that the molecular tweezer CLR01 is able to efficiently bind to the lysine stretch in the polybasic domain of K-Ras4B, resulting in dissociation of the K-Ras4B protein from the lipid membrane and disintegration of K-Ras4B nanoclusters in the lipid bilayer. These results suggest that targeting of the polybasic domain of K-Ras4B by properly designed tweezers might represent an effective strategy for inactivation of K-Ras4B signaling.


Subject(s)
Bridged-Ring Compounds/chemistry , Cell Membrane/chemistry , Lipid Bilayers/chemistry , Membrane Lipids/chemistry , Organophosphates/chemistry , Proto-Oncogene Proteins p21(ras)/chemistry , Computer Simulation , Humans , Mutation , Nanostructures/chemistry , Protein Conformation , Thermodynamics
10.
Chembiochem ; 20(9): 1190-1195, 2019 05 02.
Article in English | MEDLINE | ID: mdl-30604476

ABSTRACT

Signaling of N-Ras and K-Ras4B proteins depends strongly on their correct localization in the cell membrane. In vivo studies suggest that intermolecular interactions foster the self-association of both N-Ras and K-Ras4B and the formation of nanoclusters in the cell membrane. As sites for effector binding, nanocluster formation is thought to be essential for effective signal transmission of both N-Ras and K-Ras4B. To shed more light on the spatial arrangement and mechanism underlying the proposed cross-talk between spatially segregated Ras proteins, the simultaneous localization of N-Ras and K-Ras4B and their effect on the lateral organization of a heterogeneous model biomembrane has been studied by using AFM and FRET methodology. It is shown that, owing to the different natures of their membrane anchor systems, N-Ras and K-Ras4B not only avoid assembly in bulk solution and do not colocalize, but rather form individual nanoclusters that diffuse independently in the fluid membrane plane.


Subject(s)
Lipid Bilayers/metabolism , Lipoproteins/metabolism , Proto-Oncogene Proteins p21(ras)/metabolism , Unilamellar Liposomes/metabolism , 1,2-Dipalmitoylphosphatidylcholine/chemistry , Cholesterol/chemistry , Cyclic Nucleotide Phosphodiesterases, Type 6/metabolism , Lipid Bilayers/chemistry , Membrane Microdomains , Phosphatidylcholines/chemistry , Unilamellar Liposomes/chemistry
11.
Biophys J ; 114(5): 1080-1090, 2018 03 13.
Article in English | MEDLINE | ID: mdl-29539395

ABSTRACT

For over 50 years, it has been known that the mitosis of eukaryotic cells is inhibited already at high hydrostatic pressure conditions of 30 MPa. This effect has been attributed to the disorganization of microtubules, the main component of the spindle apparatus. However, the structural details of the depolymerization and the origin of the pressure sensitivity have remained elusive. It has also been a puzzle how complex organisms could still successfully inhabit extreme high-pressure environments such as those encountered in the depth of oceans. We studied the pressure stability of microtubules at different structural levels and for distinct dynamic states using high-pressure Fourier-transform infrared spectroscopy and Synchrotron small-angle x-ray scattering. We show that microtubules are hardly stable under abyssal conditions, where pressures up to 100 MPa are reached. This high-pressure sensitivity can be mainly attributed to the internal voids and packing defects in the microtubules. In particular, we show that lateral and longitudinal contacts feature different pressure stabilities, and they define also the pressure stability of tubulin bundles. The intactness of both contact types is necessary for the functionality of microtubules in vivo. Despite being known to dynamically stabilize microtubules and prevent their depolymerization, we found that the anti-cancer drug taxol and the accessory protein MAP2c decrease the pressure stability of microtubule protofilaments. Moreover, we demonstrate that the cellular environment itself is a crowded place and accessory proteins can increase the pressure stability of microtubules and accelerate their otherwise highly pressure-sensitive de novo formation.


Subject(s)
Microtubules/metabolism , Pressure , Animals , Brain/cytology , Cattle , Kinetics , Microtubule-Associated Proteins/chemistry , Microtubule-Associated Proteins/metabolism , Protein Multimerization , Protein Structure, Quaternary , Protein Structure, Secondary , Rats
12.
Biochim Biophys Acta Biomembr ; 1860(5): 1008-1014, 2018 May.
Article in English | MEDLINE | ID: mdl-29357287

ABSTRACT

Ras proteins are oncoproteins which play a pivotal role in cellular signaling pathways. All Ras proteins' signaling strongly depends on their correct localization in the cell membrane. Over 30% of cancers are driven by mutant Ras proteins, and KRas4B is the Ras isoform most frequently mutated. C6-ceramide has been shown to inhibit the growth activity of KRas4B mutated cells. However, the mechanism underlying this inhibition remains elusive. Here, we established a heterogeneous model biomembrane containing C6-ceramide. C6-ceramide incorporation does not disrupt the lipid membrane. Addition of KRas4B leads to drastic changes in the lateral membrane organization of the membrane, however. In contrast to the partitioning behavior in other membranes, KRas4B forms small, monodisperse nanoclusters dispersed in a fluid-like environment, in all likelihood induced by some kind of lipid sorting mechanism. Fluorescence cross-correlation data indicate no direct interaction between C6-ceramide and KRas4B, suggesting that KRas4B essentially recruits other lipids. A FRET-based binding assay reveals that the stability of KRas4B proteins inserted into the membrane containing C6-ceramide is reduced. Based on the combined results obtained, we postulate a molecular mechanism for the inhibition of KRas4B mutated cells' activity through C6-ceramide.


Subject(s)
Ceramides/metabolism , Lipid Bilayers/metabolism , Proto-Oncogene Proteins p21(ras)/metabolism , Ceramides/chemistry , Fluorescence Resonance Energy Transfer , Humans , Lipid Bilayers/chemistry , Membrane Lipids/chemistry , Membrane Lipids/metabolism , Microscopy, Atomic Force , Models, Molecular , Protein Binding , Protein Domains , Protein Structure, Secondary , Proto-Oncogene Proteins p21(ras)/chemistry , Unilamellar Liposomes/chemistry , Unilamellar Liposomes/metabolism
13.
Langmuir ; 33(16): 3982-3990, 2017 04 25.
Article in English | MEDLINE | ID: mdl-28379700

ABSTRACT

We have studied the formation and functional properties of polyelectrolyte multilayers where calmodulin (CaM) is used as a polyanion. CaM is known to populate distinct conformational states upon binding Ca2+ and small ligand molecules. Therefore, we have also probed the effects of Ca2+ ions and trifluoperazine (TFP) as ligand molecule on the interfacial structures. Multilayers with the maximum sequence PEI-(PSS-PAH)x-CaM-PAH-CaM-PAH have been deposited on silicon wafers and characterized by X-ray and neutron reflectometry. From the analysis of all data, several remarkable conclusions can be drawn. When CaM is deposited for the second time, a much thicker sublayer is produced than in the first CaM deposition step. However, upon rinsing with PAH, very thin CaM-PAH sublayers remain. There are no indications that ligand TFP can be involved in the multilayer buildup due to strong CaM-PAH interactions. However, there is a significant increase in the multilayer thickness upon removal of Ca2+ ions from holo-CaM and an equivalent decrease in the multilayer thickness upon subsequent saturation of apo-CaM with Ca2+ ions. Presumably, CaM can still be toggled between an apo and a holo state, when it is embedded in polyelectrolyte multilayers, providing an approach to design bioresponsive interfaces.

14.
Biophys J ; 109(8): 1619-29, 2015 Oct 20.
Article in English | MEDLINE | ID: mdl-26488653

ABSTRACT

The small GTP-binding proteins Arl2 and Arl3, which are close homologs, share a number of interacting partners and act as displacement factors for prenylated and myristoylated cargo. Nevertheless, both proteins have distinct biological functions. Whereas Arl3 is considered a ciliary protein, Arl2 has been reported to be involved in tubulin folding, mitochondrial function, and Ras signaling. How these different roles are attained by the two homolog proteins is not fully understood. Recently, we showed that the N-terminal amphipathic helix of Arl3, but not that of Arl2, regulates the release of myristoylated ciliary proteins from the GDI-like solubilizing factor UNC119a/b. In the biophysical study presented here, both proteins are shown to exhibit a preferential localization and clustering in liquid-disordered domains of phase-separated membranes. However, the membrane interaction behavior differs significantly between both proteins with regard to their nucleotide loading. Whereas Arl3 and other Arf proteins with an N-terminal amphipathic helix require GTP loading for the interaction with membranes, Arl2 binds to membranes in a nucleotide-independent manner. In contrast to Arl2, the N-terminal helix of Arl3 increases the binding affinity to UNC119a. Furthermore, UNC119a impedes membrane binding of Arl3, but not of Arl2. Taken together, these results suggest an interplay among the nucleotide status of Arl3, the location of the N-terminal helix, membrane fluidity and binding, and the release of lipid modified cargos from carriers such as UNC119a. Since a specific Arl3-GEF is postulated to reside inside cilia, the N-terminal helix of Arl3•GTP would be available for allosteric regulation of UNC119a cargo release only inside cilia.


Subject(s)
GTP-Binding Proteins/chemistry , Adaptor Proteins, Signal Transducing/chemistry , Fluorescence , Guanosine Diphosphate/chemistry , Kinetics , Membrane Microdomains , Membranes, Artificial , Microscopy, Atomic Force , Optical Imaging , Protein Conformation
15.
J Am Chem Soc ; 134(28): 11503-10, 2012 Jul 18.
Article in English | MEDLINE | ID: mdl-22721555

ABSTRACT

K-Ras4B is a small GTPase whose selective membrane localization and clustering into microdomains are mediated by its polybasic farnesylated C-terminus. The importance of the subcellular distribution for the signaling activity of K-Ras4B became apparent from recent in vivo studies, showing that the delta subunit of cGMP phosphodiesterase (PDEδ), which possesses a hydrophobic prenyl-binding pocket, is able to function as a potential binding partner for farnesylated proteins, thereby leading to a modulation of the spatiotemporal organization of K-Ras. Even though PDEδ has been suggested to serve as a cytosolic carrier for Ras, the functional transport mechanism still remains largely elusive. In this study, the effect of PDEδ on the interaction of GDP- and GTP-loaded K-Ras4B with neutral and anionic model biomembranes has been investigated by a combination of different spectroscopic and imaging techniques. The results show that PDEδ is not able to extract K-Ras4B from membranes. Rather, the K-Ras4B/PDEδ complex formed in bulk solution turned out to be unstable in the presence of heterogeneous membranes, resulting in a release of farnesylated K-Ras4B upon membrane contact. With the additional observation of enhanced membrane affinity for the K-Ras4B/PDEδ complex, a molecular mechanism for the PDEδ-K-Ras4B-membrane interaction could be proposed. This includes an effective delivery of PDEδ-solubilized K-Ras4B to the plasma membrane, probably through cytoplasmic diffusion, the dissociation of the K-Ras4B/PDEδ complex upon plasma membrane contact, and finally the membrane binding of released farnesylated K-Ras4B that leads to K-Ras4B-enriched microdomain formation.


Subject(s)
Cyclic Nucleotide Phosphodiesterases, Type 4/chemistry , Genes, ras , Membrane Lipids/chemistry , Kinetics , Models, Molecular
SELECTION OF CITATIONS
SEARCH DETAIL
...