Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Cereb Cortex ; 33(12): 7688-7701, 2023 06 08.
Article in English | MEDLINE | ID: mdl-37005058

ABSTRACT

The reeler mouse mutant has long served as a primary model to study the development of cortical layers, which is governed by the extracellular glycoprotein reelin secreted by Cajal-Retzius cells. Because layers organize local and long-range circuits for sensory processing, we investigated whether intracortical connectivity is compromised by reelin deficiency in this model. We generated a transgenic reeler mutant (we used both sexes), in which layer 4-fated spiny stellate neurons are labeled with tdTomato and applied slice electrophysiology and immunohistochemistry with synaptotagmin-2 to study the circuitry between the major thalamorecipient cell types, namely excitatory spiny stellate and inhibitory fast-spiking (putative basket) cells. In the reeler mouse, spiny stellate cells are clustered into barrel equivalents. In these clusters, we found that intrinsic physiology, connectivity, and morphology of spiny stellate and fast-spiking, putative basket cells does not significantly differ between reeler and controls. Properties of unitary connections, including connection probability, were very comparable in excitatory cell pairs and spiny stellate/fast-spiking cell pairs, suggesting an intact excitation-inhibition balance at the first stage of cortical sensory information processing. Together with previous findings, this suggests that thalamorecipient circuitry in the barrel cortex develops and functions independently of proper cortical lamination and postnatal reelin signaling.


Subject(s)
Neurons , Signal Transduction , Mice , Animals , Male , Female , Mice, Neurologic Mutants , Neurons/physiology , Cell Adhesion Molecules, Neuronal/genetics , Extracellular Matrix Proteins/genetics
2.
Cell Rep ; 42(1): 111936, 2023 01 31.
Article in English | MEDLINE | ID: mdl-36640357

ABSTRACT

GABAergic interneurons represent ∼15% to 20% of all cortical neurons, but their diversity grants them unique roles in cortical circuits. In the barrel cortex, responses of excitatory neurons to stimulation of facial whiskers are direction selective, whereby excitation is maximized over a narrow range of angular deflections. Whether GABAergic interneurons are also direction selective is unclear. Here, we use two-photon-guided whole-cell recordings in the barrel cortex of anesthetized mice and control whisker stimulation to measure direction selectivity in defined interneuron subtypes. Selectivity is ubiquitous in interneurons, but tuning sharpness varies across populations. Vasoactive intestinal polypeptide (VIP) interneurons are as selective as pyramidal neurons, but parvalbumin (PV) interneurons are more broadly tuned. Furthermore, a majority (2/3) of somatostatin (SST) interneurons receive direction-selective inhibition, with the rest receiving direction-selective excitation. Sensory evoked activity in the barrel cortex is thus cell-type specific, suggesting that interneuron subtypes make distinct contributions to cortical representations of stimuli.


Subject(s)
Interneurons , Somatosensory Cortex , Somatosensory Cortex/physiology , Interneurons/metabolism , Neurons/metabolism , Pyramidal Cells/metabolism , Vasoactive Intestinal Peptide/metabolism , Parvalbumins/metabolism
3.
Front Neuroanat ; 16: 1000107, 2022.
Article in English | MEDLINE | ID: mdl-36387995

ABSTRACT

Reelin is a large extracellular glycoprotein that is secreted by Cajal-Retzius cells during embryonic development to regulate neuronal migration and cell proliferation but it also seems to regulate ion channel distribution and synaptic vesicle release properties of excitatory neurons well into adulthood. Mouse mutants with a compromised reelin signaling cascade show a highly disorganized neocortex but the basic connectional features of the displaced excitatory principal cells seem to be relatively intact. Very little is known, however, about the intrinsic electrophysiological and morphological properties of individual cells in the reeler cortex. Repetitive burst-spiking (RB) is a unique property of large, thick-tufted pyramidal cells of wild-type layer Vb exclusively, which project to several subcortical targets. In addition, they are known to possess sparse but far-reaching intracortical recurrent collaterals. Here, we compared the electrophysiological properties and morphological features of neurons in the reeler primary somatosensory cortex with those of wild-type controls. Whereas in wild-type mice, RB pyramidal cells were only detected in layer Vb, and the vast majority of reeler RB pyramidal cells were found in the superficial third of the cortical depth. There were no obvious differences in the intrinsic electrophysiological properties and basic morphological features (such as soma size or the number of dendrites) were also well preserved. However, the spatial orientation of the entire dendritic tree was highly variable in the reeler neocortex, whereas it was completely stereotyped in wild-type mice. It seems that basic quantitative features of layer Vb-fated RB pyramidal cells are well conserved in the highly disorganized mutant neocortex, whereas qualitative morphological features vary, possibly to properly orient toward the appropriate input pathways, which are known to show an atypical oblique path through the reeler cortex. The oblique dendritic orientation thus presumably reflects a re-orientation of dendritic input domains toward spatially highly disorganized afferent projections.

4.
Proc Natl Acad Sci U S A ; 118(51)2021 12 21.
Article in English | MEDLINE | ID: mdl-34903668

ABSTRACT

Fast oscillations in cortical circuits critically depend on GABAergic interneurons. Which interneuron types and populations can drive different cortical rhythms, however, remains unresolved and may depend on brain state. Here, we measured the sensitivity of different GABAergic interneurons in prefrontal cortex under conditions mimicking distinct brain states. While fast-spiking neurons always exhibited a wide bandwidth of around 400 Hz, the response properties of spike-frequency adapting interneurons switched with the background input's statistics. Slowly fluctuating background activity, as typical for sleep or quiet wakefulness, dramatically boosted the neurons' sensitivity to gamma and ripple frequencies. We developed a time-resolved dynamic gain analysis and revealed rapid sensitivity modulations that enable neurons to periodically boost gamma oscillations and ripples during specific phases of ongoing low-frequency oscillations. This mechanism predicts these prefrontal interneurons to be exquisitely sensitive to high-frequency ripples, especially during brain states characterized by slow rhythms, and to contribute substantially to theta-gamma cross-frequency coupling.


Subject(s)
Gamma Rhythm/physiology , Interneurons/physiology , Prefrontal Cortex/cytology , Theta Rhythm/physiology , Animals , Female , Male , Mice , Nerve Net/physiology , Patch-Clamp Techniques
5.
Cereb Cortex ; 30(2): 488-504, 2020 03 21.
Article in English | MEDLINE | ID: mdl-31210267

ABSTRACT

Neocortical GABAergic interneurons expressing vasoactive intestinal polypeptide (VIP) contribute to sensory processing, sensorimotor integration, and behavioral control. In contrast to other major subpopulations of GABAergic interneurons, VIP neurons show a remarkable diversity. Studying morphological and electrophysiological properties of VIP cells, we found a peculiar group of neurons in layer II/III of mouse primary somatosensory (barrel) cortex, which showed a highly dynamic burst firing behavior at resting membrane potential that switched to tonic mode at depolarized membrane potentials. Furthermore, we demonstrate that burst firing depends on T-type calcium channels. The burst-tonic switch could be induced by acetylcholine (ACh) and serotonin. ACh mediated a depolarization via nicotinic receptors whereas serotonin evoked a biphasic depolarization via ionotropic and metabotropic receptors in 48% of the population and a purely monophasic depolarization via metabotropic receptors in the remaining cells. These data disclose an electrophysiologically defined subpopulation of VIP neurons that via neuromodulator-induced changes in firing behavior is likely to regulate the state of cortical circuits in a profound manner.


Subject(s)
Action Potentials , GABAergic Neurons/physiology , Somatosensory Cortex/physiology , Vasoactive Intestinal Peptide/analysis , Acetylcholine/administration & dosage , Acetylcholine/physiology , Animals , Calcium Channels, T-Type/physiology , Cholinergic Agonists/administration & dosage , GABAergic Neurons/drug effects , Mice, Transgenic , Serotonin/administration & dosage , Serotonin/physiology , Serotonin Agents/administration & dosage , Somatosensory Cortex/diagnostic imaging
6.
Cereb Cortex ; 27(10): 4851-4866, 2017 10 01.
Article in English | MEDLINE | ID: mdl-27620977

ABSTRACT

Layer IV (LIV) of the rodent somatosensory cortex contains the somatotopic barrel field. Barrels receive much of the sensory input to the cortex through innervation by thalamocortical axons from the ventral posteromedial nucleus. In the reeler mouse, the absence of cortical layers results in the formation of mispositioned barrel-equivalent clusters of LIV fated neurons. Although functional imaging suggests that sensory input activates the cortex, little is known about the cellular and synaptic properties of identified excitatory neurons of the reeler cortex. We examined the properties of thalamic input to spiny stellate (SpS) neurons in the reeler cortex with in vitro electrophysiology, optogenetics, and subcellular channelrhodopsin-2-assisted circuit mapping (sCRACM). Our results indicate that reeler SpS neurons receive direct but weakened input from the thalamus, with a dispersed spatial distribution along the somatodendritic arbor. These results further document subtle alterations in functional connectivity concomitant of absent layering in the reeler mutant. We suggest that intracortical amplification mechanisms compensate for this weakening in order to allow reliable sensory transmission to the mutant neocortex.


Subject(s)
Neural Pathways/physiology , Somatosensory Cortex/physiology , Thalamus/physiology , Animals , Mice, Transgenic , Neocortex/physiology , Neurons/physiology , Optogenetics/methods , Ventral Thalamic Nuclei/physiology
7.
PLoS One ; 11(10): e0164004, 2016.
Article in English | MEDLINE | ID: mdl-27706253

ABSTRACT

Layer Vb pyramidal cells are the major output neurons of the neocortex and transmit the outcome of cortical columnar signal processing to distant target areas. At the same time they contribute to local tactile information processing by emitting recurrent axonal collaterals into the columnar microcircuitry. It is, however, not known how exactly the two types of pyramidal cells, called slender-tufted and thick-tufted, contribute to the local circuitry. Here, we investigated in the rat barrel cortex the detailed quantitative morphology of biocytin-filled layer Vb pyramidal cells in vitro, which were characterized for their intrinsic electrophysiology with special emphasis on their action potential firing pattern. Since we stained the same slices for cytochrome oxidase, we could also perform layer- and column-related analyses. Our results suggest that in layer Vb the unambiguous action potential firing patterns "regular spiking (RS)" and "repetitive burst spiking (RB)" (previously called intrinsically burst spiking) correlate well with a distinct morphology. RS pyramidal cells are somatodendritically of the slender-tufted type and possess numerous local intralaminar and intracolumnar axonal collaterals, mostly reaching layer I. By contrast, their transcolumnar projections are less well developed. The RB pyramidal cells are somatodendritically of the thick-tufted type and show only relatively sparse local axonal collaterals, which are preferentially emitted as long horizontal or oblique infragranular collaterals. However, contrary to many previous slice studies, a substantial number of these neurons also showed axonal collaterals reaching layer I. Thus, electrophysiologically defined pyramidal cells of layer Vb show an input and output pattern which suggests RS cells to be more "locally segregating" signal processors whereas RB cells seem to act more on a "global integrative" scale.


Subject(s)
Action Potentials , Axons/physiology , Pyramidal Cells/physiology , Animals , Dendrites/physiology , Electrophysiological Phenomena , Male , Rats
8.
Cereb Cortex ; 25(12): 4854-68, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26420784

ABSTRACT

Neocortical GABAergic interneurons have a profound impact on cortical circuitry and its information processing capacity. Distinct subgroups of inhibitory interneurons can be distinguished by molecular markers, such as parvalbumin, somatostatin, and vasoactive intestinal polypeptide (VIP). Among these, VIP-expressing interneurons sparked a substantial interest since these neurons seem to operate disinhibitory circuit motifs found in all major neocortical areas. Several of these recent studies used transgenic Vip-ires-cre mice to specifically target the population of VIP-expressing interneurons. This makes it necessary to elucidate in detail the sensitivity and specificity of Cre expression for VIP neurons in these animals. Thus, we quantitatively compared endogenous tdTomato with Vip fluorescence in situ hybridization and αVIP immunohistochemistry in the barrel cortex of VIPcre/tdTomato mice in a layer-specific manner. We show that VIPcre/tdTomato mice are highly sensitive and specific for the entire population of VIP-expressing neurons. In the barrel cortex, approximately 13% of all GABAergic neurons are VIP expressing. Most VIP neurons are found in layer II/III (∼60%), whereas approximately 40% are found in the other layers of the barrel cortex. Layer II/III VIP neurons are significantly different from VIP neurons in layers IV-VI in several morphological and membrane properties, which suggest layer-dependent differences in functionality.


Subject(s)
Interneurons/cytology , Interneurons/metabolism , Interneurons/physiology , Somatosensory Cortex/cytology , Somatosensory Cortex/metabolism , Somatosensory Cortex/physiology , Vasoactive Intestinal Peptide/metabolism , Action Potentials , Animals , Axons , Dendrites , GABAergic Neurons/cytology , GABAergic Neurons/metabolism , GABAergic Neurons/physiology , Immunohistochemistry/methods , In Situ Hybridization, Fluorescence/methods , Mice , Mice, Transgenic , Parvalbumins/metabolism , RNA, Messenger/metabolism , Somatostatin/metabolism
9.
Cereb Cortex ; 25(9): 2517-28, 2015 Sep.
Article in English | MEDLINE | ID: mdl-24759695

ABSTRACT

In rodents, layer IV of the primary somatosensory cortex contains the barrel field, where individual, large facial whiskers are represented as a dense cluster of cells. In the reeler mouse, a model of disturbed cortical development characterized by a loss of cortical lamination, the barrel field exists in a distorted manner. Little is known about the consequences of such a highly disturbed lamination on cortical function in this model. We used in vivo intrinsic signal optical imaging together with piezo-controlled whisker stimulation to explore sensory map organization and stimulus representation in the barrel field. We found that the loss of cortical layers in reeler mice had surprisingly little incidence on these properties. The overall topological order of whisker representations is highly preserved and the functional activation of individual whisker representations is similar in size and strength to wild-type controls. Because intrinsic imaging measures hemodynamic signals, we furthermore investigated the cortical blood vessel pattern of both genotypes, where we also did not detect major differences. In summary, the loss of the reelin protein results in a widespread disturbance of cortical development which compromises neither the establishment nor the function of an ordered, somatotopic map of the facial whiskers.


Subject(s)
Afferent Pathways/physiology , Brain Mapping , Malformations of Cortical Development/pathology , Somatosensory Cortex/pathology , Somatosensory Cortex/physiopathology , Analysis of Variance , Animals , Disease Models, Animal , Epithelial Sodium Channels/genetics , Epithelial Sodium Channels/metabolism , Imaging, Three-Dimensional , Malformations of Cortical Development/genetics , Mice , Mice, Neurologic Mutants , Mice, Transgenic , Optogenetics , Physical Stimulation , Plant Lectins/genetics , Plant Lectins/metabolism , RNA, Untranslated/genetics , RNA, Untranslated/metabolism , Reelin Protein , Time Factors , Vibrissae/innervation
10.
J Neurophysiol ; 95(6): 3414-25, 2006 Jun.
Article in English | MEDLINE | ID: mdl-16641380

ABSTRACT

The majority of cerebral signals destined for the cerebellum are handed over by the pontine nuclei (PN), which thoroughly reorganize the neocortical topography. The PN maps neocortical signals of wide-spread origins into adjacent compartments delineated by spatially precise distribution of cortical terminals and postsynaptic dendrites. We asked whether and how signals interact on the level of the PN. Intracellular fillings of rat PN cells in vitro did not reveal any intrinsic axonal branching neither within the range of the cells' dendrites nor farther away. Furthermore, double whole cell patch recordings did not show any signs of interaction between neighboring pontine cells. Using simultaneous unit recording in the PN and cerebellar nuclei (CN) in rats in vivo, we investigated whether PN compartments interact via extrinsic reciprocal connections with the CN. Repetitive electrical stimulation of the cerebral peduncle of < or = 40 Hz readily evoked rapid sequential activation of PN and CN, demonstrating a direct connection between the structures. Stimulation of the PN gray matter led to responses in neurons < or = 600 microm away from the stimulation site at latencies compatible with di- or polysynaptic pathways via the CN. Importantly, these interactions were spatially discontinuous around the stimulation electrode suggesting that reciprocal PN-CN loops in addition reflect the compartmentalized organization of the PN. These findings are in line with the idea that the cerebellum makes use of the compartmentalized map in the PN to orchestrate the composition of its own neocortical input.


Subject(s)
Action Potentials/physiology , Cerebellar Nuclei/physiology , Neural Inhibition/physiology , Neural Pathways/physiology , Neurons/physiology , Pons/physiology , Synaptic Transmission/physiology , Animals , Feedback/physiology , Rats
11.
Prog Brain Res ; 151: 293-320, 2006.
Article in English | MEDLINE | ID: mdl-16221593

ABSTRACT

Cerebral cortex and the cerebellum interact closely in order to facilitate spatial orientation and the generation of motor behavior, including eye movements. This interaction is based on a massive projection system that allows the exchange of signals between the two cortices. This cerebro-cerebellar communication system includes several intercalated brain stem nuclei, whose eminent role in the organization of oculomotor behavior has only recently become apparent. This review focuses on the two major nuclei of this group taking a precerebellar position, the pontine nuclei and the nucleus reticularis tegmenti pontis, both intimately involved in the visual guidance of eye movements.


Subject(s)
Eye Movements/physiology , Pons/physiology , Animals , Cerebellar Cortex/anatomy & histology , Cerebellar Cortex/physiology , Cerebral Cortex/anatomy & histology , Cerebral Cortex/physiology , Haplorhini , Humans , Neural Pathways/anatomy & histology , Neural Pathways/physiology , Proprioception/physiology , Pursuit, Smooth/physiology , Superior Colliculi/physiology , Visual Perception/physiology , gamma-Aminobutyric Acid/physiology
12.
J Comp Neurol ; 484(3): 283-98, 2005 Apr 11.
Article in English | MEDLINE | ID: mdl-15739237

ABSTRACT

We investigated the spatial relationship of axonal and dendritic structures in the rat pontine nuclei (PN), which transfer visual signals from the superior colliculus (SC) and visual cortex (A17) to the cerebellum. Double anterograde tracing (DiI and DiAsp) from different sites in the SC showed that the tectal retinotopy of visual signals is largely lost in the PN. Whereas axon terminals from lateral sites in the SC were confined to a single terminal field close to the cerebral peduncle, medial sites in the SC projected to an additional dorsolateral one. On the other hand, axon terminals originating from the two structures occupy close but, nevertheless, totally nonoverlapping terminal fields within the PN. Furthermore, a quantitative analysis of the dendritic trees of intracellularly filled identified pontine projection neurons showed that the dendritic fields were confined to either the SC or the A17 terminal fields and never extended into both. We also investigated the projections carrying cortical somatosensory inputs to the PN as these signals are known to converge with tectal ones in the cerebellum. However, terminals originating in the whisker representation of the primary somatosensory cortex and in the SC were located in segregated pontine compartments as well. Our results, therefore, point to a possible pontocerebellar mapping rule: Functionally related signals, commonly destined for common cerebellar target zones but residing in different afferent locations, may be kept segregated on the level of the PN and converge only later at specific sites in the granular layer of cerebellar cortex.


Subject(s)
Pons/cytology , Somatosensory Cortex/cytology , Superior Colliculi/cytology , Visual Cortex/cytology , Visual Pathways/cytology , Animals , Axons/metabolism , Brain Mapping , Carbocyanines/metabolism , Dendrites/metabolism , Functional Laterality , Pons/metabolism , Presynaptic Terminals/metabolism , Pyridinium Compounds/metabolism , Rats , Somatosensory Cortex/metabolism , Visual Cortex/metabolism
13.
J Comp Neurol ; 452(4): 311-23, 2002 Oct 28.
Article in English | MEDLINE | ID: mdl-12355415

ABSTRACT

The Lurcher mutant mouse is characterized by a primary selective loss of Purkinje cells, leading to the near total apoptotic death of these neurons. In contrast to the subsequent massive secondary degeneration of the granule cells and the inferior olivary neurons, only mild degeneration occurs in the deep cerebellar nuclei (DCN). However, it is not known to what extent the different populations of DCN neurons-glutamatergic principal projection neurons, gamma-aminobutyric acid (GABA)-ergic inferior olivary projection neurons, and glycinergic neurons-are affected in their neurotransmitter composition. To answer this question we studied the neurotransmitter contents (glutamate, GABA, and glycine) of DCN neurons and the size of synaptic boutons immunohistochemically on serial semithin sections in both Lurcher and wild-type mice. Applying the physical dissector counting method, our results confirmed the mild degeneration (a reduction by 20%) of large glutamatergic neurons and a more pronounced degeneration of GABAergic (by 42%) and glycinergic neurons (by 45%). On the other hand, an analysis of neurons colabeled for both GABA and glycine, revealed that this specific colabeling increased in the Lurcher mutant (by 40%). In addition, both the GABA-immunolabeled (IL) (by 56%) and the glycine-IL (by 45%) synaptic boutons showed an increase in diameter in the mutant. The density of these boutons showed a decrease of 30% each. In summary, the increase in the number of neurons colabeled for GABA and glycine, together with the increase in the size of the inhibitory synaptic boutons, could help in providing the minimum inhibition needed to maintain a residual "cerebellar" functionality in the Lurcher DCN.


Subject(s)
Cerebellar Nuclei/chemistry , Mice, Neurologic Mutants , Neurotransmitter Agents/analysis , Spinocerebellar Ataxias/metabolism , Animals , Cell Count , Cerebellar Nuclei/pathology , Glutamic Acid/analysis , Glycine/analysis , Immunohistochemistry , Mice , Neural Inhibition , Neurons/chemistry , Neurons/pathology , Presynaptic Terminals/chemistry , Presynaptic Terminals/pathology , Spinocerebellar Ataxias/pathology , gamma-Aminobutyric Acid/analysis
14.
J Neurophysiol ; 88(2): 549-64, 2002 Aug.
Article in English | MEDLINE | ID: mdl-12163509

ABSTRACT

Serotonergic modulation of precerebellar nuclei may be crucial for the function of the entire cerebellar system. To study the effects of serotonin (5-HT) on neurons located within the pontine nuclei (PN), the main source of cerebellar mossy fibers, we performed standard intracellular recordings from PN neurons in a slice preparation of the rat pontine brain stem. Application of 5 microM 5-HT significantly altered several intrinsic membrane properties of PN neurons. First, it depolarized the somatic membrane potential by 6.5 +/- 3.5 mV and increased the apparent input resistance from 49.5 +/- 14.6 to 62.7 +/- 21.1 MOmega. Second, 5-HT altered the I-V relationship of PN neurons: it decreased the inward rectification in hyperpolarizing direction, but increased it when depolarizing currents were applied. Third, it decreased the rheobase from 0.32 +/- 0.14 to 0.24 +/- 0.14 nA without affecting the firing threshold. Finally, the amplitude of medium-duration after hyperpolarizations was reduced from -14.9 +/- 2.0 to -12.3 +/- 2.4 mV. Together, these 5-HT effects on the intrinsic membrane properties result in an increase in excitability and instantaneous firing rate. In addition, application of 5 microM 5-HT also modulated postsynaptic potentials (PSPs) evoked by electric stimulations within the cerebral peduncle. The amplitude, maximal slope, and integral of these PSPs were reduced to 46.2 +/- 23.4%, 45.7 +/- 23.7%, and 61.4 +/- 28.4% of the control value, respectively. In contrast, we found no change in the decay and voltage dependence of PSPs. To test modulatory effects on short-term synaptic facilitation, we applied pairs of electrical stimuli at intervals between 10 and 1,000 ms. 5-HT selectively enhanced the paired-pulse facilitation for interstimulus-intervals >20 ms. The alteration of paired-pulse facilitation points to a presynaptic site of action for 5-HT effects on synaptic transmission. Pharmacological experiments suggested that pre- and postsynaptic effects of 5-HT were mediated by two different kinds of 5-HT receptors: changes in intrinsic membrane properties were blocked by the 5-HT(2) receptor antagonist cinanserin while the reduction of PSPs was prevented by the 5-HT(1) receptor antagonist cyanopindolol. In conclusion, 5-HT increases the excitability of PN neurons but decreases the synaptic transmission on them. The selective enhancement of synaptic facilitation may, however, allow high-frequency inputs to effectively drive PN neurons, thus the PN may act as a high-pass filter during periods of 5-HT release.


Subject(s)
Nerve Fibers/physiology , Pindolol/analogs & derivatives , Pons/physiology , Serotonin/metabolism , Synaptic Transmission , Animals , Cinanserin/pharmacology , Electrophysiology , Nerve Fibers/metabolism , Pindolol/pharmacology , Pons/metabolism , Rats , Rats, Sprague-Dawley , Receptors, Serotonin/metabolism , Serotonin Antagonists/pharmacology , Synaptic Transmission/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...