Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Astrobiology ; 10(6): 617-28, 2010.
Article in English | MEDLINE | ID: mdl-20735252

ABSTRACT

Hygroscopic salts have been detected in soils in the northern latitudes of Mars, and widespread chloride-bearing evaporitic deposits have been detected in the southern highlands. The deliquescence of hygroscopic minerals such as chloride salts could provide a local and transient source of liquid water that would be available for microorganisms on the surface. This is known to occur in the Atacama Desert, where massive halite evaporites have become a habitat for photosynthetic and heterotrophic microorganisms that take advantage of the deliquescence of the salt at certain relative humidity (RH) levels. We modeled the climate conditions (RH and temperature) in a region on Mars with chloride-bearing evaporites, and modeled the evolution of the water activity (a(w)) of the deliquescence solutions of three possible chloride salts (sodium chloride, calcium chloride, and magnesium chloride) as a function of temperature. We also studied the water absorption properties of the same salts as a function of RH. Our climate model results show that the RH in the region with chloride-bearing deposits on Mars often reaches the deliquescence points of all three salts, and the temperature reaches levels above their eutectic points seasonally, in the course of a martian year. The a(w) of the deliquescence solutions increases with decreasing temperature due mainly to the precipitation of unstable phases, which removes ions from the solution. The deliquescence of sodium chloride results in transient solutions with a(w) compatible with growth of terrestrial microorganisms down to 252 K, whereas for calcium chloride and magnesium chloride it results in solutions with a(w) below the known limits for growth at all temperatures. However, taking the limits of a(w) used to define special regions on Mars, the deliquescence of calcium chloride deposits would allow for the propagation of terrestrial microorganisms at temperatures between 265 and 253 K, and for metabolic activity (no growth) at temperatures between 253 and 233 K.


Subject(s)
Hygroscopic Agents/chemistry , Mars , Salts/chemistry , Water/chemistry , Absorption , Climate , Exobiology , Extraterrestrial Environment , Humidity , Partial Pressure , Steam
2.
Astrobiology ; 10(2): 215-27, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20402583

ABSTRACT

Lichens were repetitively exposed over 22 days to thermophysical Mars-like conditions at low-and mid-latitudes. The simulated parameters and the experimental setup are described. Natural samples of the lichen Xanthoria elegans were used to investigate their ability to survive the applied Mars-like conditions. The effects of atmospheric pressure, CO(2) concentration, low temperature, water availability, and light on Mars were also studied. The results of these experiments indicate that no significant decrease in the vitality of the lichen occurred after exposure to simulated martian conditions, which was demonstrated by confocal laser scanning microscopy analysis, and a 95% CO(2) atmosphere with 100% humidity, low pressure (partial pressure of CO(2) was 600 Pa), and low temperature has a balancing effect on photosynthetic activity as a function of temperature. This means a starting low photosynthetic activity at high CO(2) concentrations with Earth-like pressure has a reduction of 60%. But, if the simulated atmospheric pressure is reduced to Mars-like conditions with the maintenance of the same Mars-like 95% CO(2) concentration, the photosynthetic activity increases and again reaches similar values as those exhibited under terrestrial atmospheric pressure and concentration. Based on these results, we presume that, in any region on Mars where liquid water might be available, even for short periods of time, a eukaryotic symbiotic organism would have the ability to survive, at least over weeks, and to temporarily photosynthesize.


Subject(s)
Exobiology/methods , Lichens/physiology , Photosynthesis , Carbon Dioxide/chemistry , Earth, Planet , Mars , Microscopy, Confocal/methods , Pressure , Temperature , Water/chemistry
3.
Cryobiology ; 58(3): 256-61, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19444970

ABSTRACT

It is known that life processes below the melting point temperature can actively evolve and establish in micrometer-sized (and larger) veins and structures in ice and permafrost soil, filled with unfrozen water. Thermodynamic arguments and experimental results indicate the existence of much smaller nanometer sized thin films of undercooled liquid interfacial (ULI) water on surfaces of micrometer sized and larger mineral particles and microbes in icy environments far below the melting point temperature. This liquid interfacial water can be described in terms of a freezing point depression, which is due to the interfacial pressure of van der Waals forces. The physics behind the possibly also life supporting capability of nanometric films of undercooled liquid interfacial water, which also can "mantle" the surfaces of the much larger and micrometer-sized microbes, is discussed. As described, biological processes do not necessarily have to proceed in the "bulk"" of the thin interfacial water, as in "vinical" water and in the micrometer sized veins e.g., but they can be supported or are even made possible already by covering thin mantles of liquid interfacial water. These can provide liquid water for metabolic processes and act as carrier for the necessary transport of nutrients and waste. ULI water supports two different and possibly biologically relevant transport processes: 2D molecular diffusion in the interfacial film, and flow-like due to regelation. ULI-water, which is "lost" by transport into microbes, e.g., will be refilled from the neighbouring ice. In this way, the nanometric liquid environment of microbes in ULI-water is comparable to that of microbes in bulk water. Another probably also biologically relevant property of ULI is, depending on the hydrophobic or hydrophilic character of the surfaces, that it is of lower density (LDL) or higher density (HDL) than bulk water. Furthermore, capillary effects and ions in ULI-water solutions can support, enhance, and stabilize the formation of layers of interfacial water. A more detailed future investigation of the possible support of life processes by nanometric ULI water in ice is a challenge to current cryomicrobiology. Related results of Rivkina et al. [22] indeed indicate that life processes can remain active at water contents corresponding to about or less than two monolayers of ULI water.


Subject(s)
Nanostructures/chemistry , Transition Temperature , Water/chemistry , Hydrophobic and Hydrophilic Interactions , Membranes, Artificial , Porosity , Surface Properties , Thermodynamics
4.
Orig Life Evol Biosph ; 37(2): 189-200, 2007 Apr.
Article in English | MEDLINE | ID: mdl-17160628

ABSTRACT

Methanogenic archaea from Siberian permafrost complementary to the already well-studied methanogens from non-permafrost habitats were exposed to simulated Martian conditions. After 22 days of exposure to thermo-physical conditions at Martian low- and mid-latitudes up to 90% of methanogenic archaea from Siberian permafrost survived in pure cultures as well as in environmental samples. In contrast, only 0.3%-5.8% of reference organisms from non-permafrost habitats survived at these conditions. This suggests that methanogens from terrestrial permafrost seem to be remarkably resistant to Martian conditions. Our data also suggest that in scenario of subsurface lithoautotrophic life on Mars, methanogenic archaea from Siberian permafrost could be used as appropriate candidates for the microbial life on Mars.


Subject(s)
Archaea/physiology , Exobiology/methods , Archaea/metabolism , Cell Count , Computer Simulation , Ecosystem , Environment , Extraterrestrial Environment , Ice , In Situ Hybridization, Fluorescence , Mars , Methane , Soil Microbiology , Temperature , Time Factors , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...