Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 56
Filter
1.
Microorganisms ; 11(9)2023 Aug 31.
Article in English | MEDLINE | ID: mdl-37764054

ABSTRACT

In addition to vector control, long-lasting insecticidal nets and case management, the prevention of infection through vaccination and/or chemoprevention are playing an increasing role in the drive to eradicate malaria. These preventative approaches represent opportunities for improvement: new drugs may be discovered that target the early infectious stages of the Plasmodium parasite in the liver (rather than the symptomatic, abundant blood stage), and new, exciting vaccination technologies have recently been validated (using mRNA or novel adjuvants). Exploiting these possibilities requires the availability of humanized mouse models that support P. falciparum infection yet avoid the hazardous use of infectious mosquitoes. Here, we show that commercially available P. falciparum sporozoites and FRG mice carrying human hepatocytes and red blood cells faithfully recapitulate the early human malaria disease process, presenting an opportunity to use this model for the evaluation of prophylactic treatments with a novel mode of action.

2.
CPT Pharmacometrics Syst Pharmacol ; 12(9): 1335-1346, 2023 09.
Article in English | MEDLINE | ID: mdl-37587640

ABSTRACT

As part of a collaboration between Medicines for Malaria Venture (MMV), Certara UK and Monash University, physiologically-based pharmacokinetic (PBPK) models were developed for 20 antimalarials, using data obtained from standardized in vitro assays and clinical studies within the literature. The models have been applied within antimalarial drug development at MMV for more than 5 years. During this time, a strategy for their impactful use has evolved. All models are described in the supplementary material and are available to researchers. Case studies are also presented, demonstrating real-world development and clinical applications, including the assessment of the drug-drug interaction liability between combination partners or with co-administered drugs. This work emphasizes the benefit of PBPK modeling for antimalarial drug development and decision making, and presents a strategy to integrate it into the research and development process. It also provides a repository of shared information to benefit the global health research community.


Subject(s)
Antimalarials , Humans , Drug Development , Research Design , Universities
4.
CPT Pharmacometrics Syst Pharmacol ; 12(1): 50-61, 2023 01.
Article in English | MEDLINE | ID: mdl-36412499

ABSTRACT

Chemoprophylactics are a vital tool in the fight against malaria. They can be used to protect populations at risk, such as children younger than the age of 5 in areas of seasonal malaria transmission or pregnant women. Currently approved chemoprophylactics all present challenges. There are either concerns about unacceptable adverse effects such as neuropsychiatric sequalae (mefloquine), risks of hemolysis in patients with G6PD deficiency (8-aminoquinolines such as tafenoquine), or cost and daily dosing (atovaquone-proguanil). Therefore, there is a need to develop new chemoprophylactic agents to provide more affordable therapies with better compliance through improving properties such as pharmacokinetics to allow weekly, preferably monthly, dosing. Here we present a pharmacokinetic-pharmacodynamic (PKPD) model constructed using DSM265 (a dihydroorotate dehydrogenase inhibitor with activity against the liver schizonts of malaria, therefore, a prophylaxis candidate). The PKPD model mimics the parasite lifecycle by describing parasite dynamics and drug activity during the liver and blood stages. A major challenge is the estimation of model parameters, as only blood-stage parasites can be observed once they have reached a threshold. By combining qualitative and quantitative knowledge about the parasite from various sources, it has been shown that it is possible to infer information about liver-stage growth and its initial infection level. Furthermore, by integrating clinical data, the killing effect of the drug on liver- and blood-stage parasites can be included in the PKPD model, and a clinical outcome can be predicted. Despite multiple challenges, the presented model has the potential to help translation from preclinical to late development for new chemoprophylactic candidates.


Subject(s)
Antimalarials , Glucosephosphate Dehydrogenase Deficiency , Malaria , Child , Humans , Female , Pregnancy , Antimalarials/pharmacology , Antimalarials/therapeutic use , Malaria/drug therapy , Malaria/prevention & control , Glucosephosphate Dehydrogenase Deficiency/chemically induced , Glucosephosphate Dehydrogenase Deficiency/drug therapy , Enzyme Inhibitors , Liver
5.
Antimicrob Agents Chemother ; 66(11): e0055622, 2022 11 15.
Article in English | MEDLINE | ID: mdl-36197116

ABSTRACT

The development and spread of drug-resistant phenotypes substantially threaten malaria control efforts. Combination therapies have the potential to minimize the risk of resistance development but require intensive preclinical studies to determine optimal combination and dosing regimens. To support the selection of new combinations, we developed a novel in vitro-in silico combination approach to help identify the pharmacodynamic interactions of the two antimalarial drugs in a combination which can be plugged into a pharmacokinetic/pharmacodynamic model built with human monotherapy parasitological data to predict the parasitological endpoints of the combination. This makes it possible to optimally select drug combinations and doses for the clinical development of antimalarials. With this assay, we successfully predicted the endpoints of two phase 2 clinical trials in patients with the artefenomel-piperaquine and artefenomel-ferroquine drug combinations. In addition, the predictive performance of our novel in vitro model was equivalent to that of the humanized mouse model outcome. Last, our more informative in vitro combination assay provided additional insights into the pharmacodynamic drug interactions compared to the in vivo systems, e.g., a concentration-dependent change in the maximum killing effect (Emax) and the concentration producing 50% of the killing maximum effect (EC50) of piperaquine or artefenomel or a directional reduction of the EC50 of ferroquine by artefenomel and a directional reduction of Emax of ferroquine by artefenomel. Overall, this novel in vitro-in silico-based technology will significantly improve and streamline the economic development of new drug combinations for malaria and potentially also in other therapeutic areas.


Subject(s)
Antimalarials , Malaria, Falciparum , Malaria , Parasites , Humans , Animals , Mice , Antimalarials/therapeutic use , Malaria, Falciparum/drug therapy , Malaria/drug therapy , Drug Combinations , Plasmodium falciparum
6.
Am J Trop Med Hyg ; 107(4): 804-814, 2022 10 12.
Article in English | MEDLINE | ID: mdl-36037868

ABSTRACT

Plasmodium falciparum sporozoite (PfSPZ) direct venous inoculation (DVI) using cryopreserved, infectious PfSPZ (PfSPZ Challenge [Sanaria, Rockville, Maryland]) is an established controlled human malaria infection model. However, to evaluate new chemical entities with potential blood-stage activity, more detailed data are needed on safety, tolerability, and parasite clearance kinetics for DVI of PfSPZ Challenge with established schizonticidal antimalarial drugs. This open-label, phase Ib study enrolled 16 malaria-naïve healthy adults in two cohorts (eight per cohort). Following DVI of 3,200 PfSPZ (NF54 strain), parasitemia was assessed by quantitative polymerase chain reaction (qPCR) from day 7. The approved antimalarial artemether-lumefantrine was administered at a qPCR-defined target parasitemia of ≥ 5,000 parasites/mL of blood. The intervention was generally well tolerated, with two grade 3 adverse events of neutropenia, and no serious adverse events. All 16 participants developed parasitemia after a mean of 9.7 days (95% CI 9.1-10.4) and a mean parasitemia level of 511 parasites/mL (95% CI 369-709). The median time to reach ≥ 5,000 parasites/mL was 11.5 days (95% CI 10.4-12.4; Kaplan-Meier), at that point the geometric mean (GM) parasitemia was 15,530 parasites/mL (95% CI 10,268-23,488). Artemether-lumefantrine was initiated at a GM of 12.1 days (95% CI 11.5-12.7), and a GM parasitemia of 6,101 parasites/mL (1,587-23,450). Mean parasite clearance time was 1.3 days (95% CI 0.9-2.1) and the mean log10 parasite reduction ratio over 48 hours was 3.6 (95% CI 3.4-3.7). This study supports the safety, tolerability, and feasibility of PfSPZ Challenge by DVI for evaluating the blood-stage activity of candidate antimalarial drugs.


Subject(s)
Antimalarials , Malaria , Parasites , Adult , Animals , Antimalarials/adverse effects , Artemether/therapeutic use , Artemether, Lumefantrine Drug Combination/adverse effects , Humans , Malaria/drug therapy , Parasitemia/drug therapy , Parasitemia/parasitology , Plasmodium falciparum , Sporozoites
8.
Antimicrob Agents Chemother ; 66(7): e0011422, 2022 07 19.
Article in English | MEDLINE | ID: mdl-35727057

ABSTRACT

The rate at which parasitemia declines in a host after treatment with an antimalarial drug is a major metric for assessment of antimalarial drug activity in preclinical models and in early clinical trials. However, this metric does not distinguish between viable and nonviable parasites. Thus, enumeration of parasites may result in underestimation of drug activity for some compounds, potentially confounding its use as a metric for assessing antimalarial activity in vivo. Here, we report a study of the effect of artesunate on Plasmodium falciparum viability in humans and in mice. We first measured the drug effect in mice by estimating the decrease in parasite viability after treatment using two independent approaches to estimate viability. We demonstrate that, as previously reported in humans, parasite viability declines much faster after artesunate treatment than does the decline in parasitemia (termed parasite clearance). We also observed that artesunate kills parasites faster at higher concentrations, which is not discernible from the traditional parasite clearance curve and that each subsequent dose of artesunate maintains its killing effect. Furthermore, based on measures of parasite viability, we could accurately predict the in vivo recrudescence of infection. Finally, using pharmacometrics modeling, we show that the apparent differences in the antimalarial activity of artesunate in mice and humans are partly explained by differences in host removal of dead parasites in the two hosts. However, these differences, along with different pharmacokinetic profiles, do not fully account for the differences in activity. (This study has been registered with the Australian New Zealand Clinical Trials Registry under identifier ACTRN12617001394336.).


Subject(s)
Antimalarials , Artemisinins , Malaria, Falciparum , Parasites , Animals , Antimalarials/pharmacokinetics , Antimalarials/therapeutic use , Artemisinins/pharmacokinetics , Artemisinins/therapeutic use , Artesunate/pharmacology , Artesunate/therapeutic use , Australia , Humans , Malaria, Falciparum/drug therapy , Mice , Parasitemia/drug therapy , Parasitemia/parasitology , Plasmodium falciparum
9.
Lancet Infect Dis ; 22(6): 879-890, 2022 06.
Article in English | MEDLINE | ID: mdl-35247321

ABSTRACT

BACKGROUND: New antimalarials with novel mechanisms of action are needed to combat the emergence of drug resistance. Triaminopyrimidines comprise a novel antimalarial class identified in a high-throughput screen against asexual blood-stage Plasmodium falciparum. This first-in-human study aimed to characterise the safety, pharmacokinetics, and antimalarial activity of the triaminopyrimidine ZY-19489 in healthy volunteers. METHODS: A three-part clinical trial was conducted in healthy adults (aged 18-55 years) in Brisbane, QLD, Australia. Part one was a double-blind, randomised, placebo-controlled, single ascending dose study in which participants enrolled into one of six dose groups (25, 75, 150, 450, 900, or 1500 mg) were randomly assigned (3:1) to ZY-19489 or placebo. Part two was an open-label, randomised, two-period cross-over, pilot food-effect study in which participants were randomly assigned (1:1) to a fasted-fed or a fed-fasted sequence. Part three was an open-label, randomised, volunteer infection study using the P falciparum induced blood-stage malaria model in which participants were enrolled into one of two cohorts, with participants in cohort one all receiving the same dose of ZY-19489 and participants in cohort two randomly assigned to receive one of two doses. The primary outcome for all three parts was the incidence, severity, and relationship to ZY-19489 of adverse events. Secondary outcomes were estimation of ZY-19489 pharmacokinetic parameters for all parts; how these parameters were affected by the fed state for part two only; and the parasite reduction ratio, parasite clearance half-life, recrudescent parasitaemia, and pharmacokinetic-pharmacodynamic modelling parameters for part three only. This trial is registered with the Australian New Zealand Clinical Trials Registry (ACTRN12619000127101, ACTRN12619001466134, and ACTRN12619001215112). FINDINGS: 48 participants were enrolled in part one (eight per cohort for 25-1500 mg cohorts), eight in part two (four in each group, all dosed with 300 mg), and 15 in part three (five dosed with 200 mg, eight with 300 mg, and two with 900 mg). In part one, the incidence of drug-related adverse events was higher in the 1500 mg dose group (occurring in all six participants) than in lower-dose groups and the placebo group (occurring in one of six in the 25 mg group, two of six in the 75 mg group, three of six in the 150 mg group, two of six in the 450 mg group, four of six in the 900 mg group, and four of 12 in the placebo group), due to the occurrence of mild gastrointestinal symptoms. Maximum plasma concentrations occurred 5-9 h post-dosing, and the elimination half-life was 50-97 h across the dose range. In part two, three of seven participants had a treatment-related adverse event in the fed state and four of eight in the fasted state. Dosing in the fed state delayed absorption (maximum plasma concentration occurred a median of 12·0 h [range 7·5-16·0] after dosing in the fed state vs 6·0 h [4·5-9·1] in the fasted state) but had no effect on overall exposure (difference in area under the concentration-time curve from time 0 [dosing] extrapolated to infinity between fed and fasted states was -0·013 [90% CI -0·11 to 0·08]). In part three, drug-related adverse events occurred in four of five participants in the 200 mg group, seven of eight in the 300 mg group, and both participants in the 900 mg group. Rapid initial parasite clearance occurred in all participants following dosing (clearance half-life 6·6 h [95% CI 6·2-6·9] for 200 mg, 6·8 h [95% CI 6·5-7·1] for 300 mg, and 7·1 h [95% CI 6·6-7·6] for 900 mg). Recrudescence occurred in four of five participants in the 200 mg group, five of eight in the 300 mg group, and neither of the two participants in the 900 mg group. Simulations done using a pharmacokinetic-pharmacodynamic model predicted that a single dose of 1100 mg would clear baseline parasitaemia by a factor of 109. INTERPRETATION: The safety, pharmacokinetic profile, and antimalarial activity of ZY-19489 in humans support the further development of the compound as a novel antimalarial therapy. FUNDING: Cadila Healthcare and Medicines for Malaria Venture.


Subject(s)
Antimalarials , Malaria, Falciparum , Adult , Antimalarials/adverse effects , Australia , Double-Blind Method , Humans , Malaria, Falciparum/drug therapy , Malaria, Falciparum/parasitology , Parasitemia , Pilot Projects , Volunteers
10.
PLOS Glob Public Health ; 2(3): e0000211, 2022.
Article in English | MEDLINE | ID: mdl-36962305

ABSTRACT

Seasonal malaria chemoprevention (SMC) has proven highly efficacious in reducing malaria incidence. However, the continued success of SMC is threatened by the spread of resistance against one of its main preventive ingredients, Sulfadoxine-Pyrimethamine (SP), operational challenges in delivery, and incomplete adherence to the regimens. Via a simulation study with an individual-based model of malaria dynamics, we provide quantitative evidence to assess long-acting injectables (LAIs) as potential alternatives to SMC. We explored the predicted impact of a range of novel preventive LAIs as a seasonal prevention tool in children aged three months to five years old during late-stage clinical trials and at implementation. LAIs were co-administered with a blood-stage clearing drug once at the beginning of the transmission season. We found the establishment of non-inferiority of LAIs to standard 3 or 4 rounds of SMC with SP-amodiaquine was challenging in clinical trial stages due to high intervention deployment coverage. However, our analysis of implementation settings where the achievable SMC coverage was much lower, show LAIs with fewer visits per season are potential suitable replacements to SMC. Suitability as a replacement with higher impact is possible if the duration of protection of LAIs covered the duration of the transmission season. Furthermore, optimising LAIs coverage and protective efficacy half-life via simulation analysis in settings with an SMC coverage of 60% revealed important trade-offs between protective efficacy decay and deployment coverage. Our analysis additionally highlights that for seasonal deployment for LAIs, it will be necessary to investigate the protective efficacy decay as early as possible during clinical development to ensure a well-informed candidate selection process.

11.
J Infect Dis ; 225(6): 1062-1069, 2022 03 15.
Article in English | MEDLINE | ID: mdl-32479608

ABSTRACT

BACKGROUND: Interventions that effectively target Plasmodium vivax are critical for the future control and elimination of malaria. We conducted a P. vivax volunteer infection study to characterize the antimalarial activity of artefenomel, a new drug candidate. METHODS: Eight healthy, malaria-naive participants were intravenously inoculated with blood-stage P. vivax and subsequently received a single oral 200-mg dose of artefenomel. Blood samples were collected to monitor the development and clearance of parasitemia, and plasma artefenomel concentration. Mosquito feeding assays were conducted before artefenomel dosing to investigate parasite transmissibility. RESULTS: Initial parasite clearance occurred in all participants after artefenomel administration (log10 parasite reduction ratio over 48 hours, 1.67; parasite clearance half-life, 8.67 hours). Recrudescence occurred in 7 participants 11-14 days after dosing. A minimum inhibitory concentration of 0.62 ng/mL and minimum parasiticidal concentration that achieves 90% of maximum effect of 0.83 ng/mL were estimated, and a single 300-mg dose was predicted to clear 109 parasites per milliliter with 95% certainty. Gametocytemia developed in all participants and was cleared 4-8 days after dosing. At peak gametocytemia, 75% of participants were infectious to mosquitoes. CONCLUSIONS: The in vivo antimalarial activity of artefenomel supports its further clinical development as a treatment for P. vivax malaria. CLINICAL TRIALS REGISTRATION: NCT02573857.


Subject(s)
Antimalarials , Culicidae , Folic Acid Antagonists , Malaria, Falciparum , Malaria, Vivax , Parasites , Adamantane/analogs & derivatives , Animals , Antimalarials/pharmacology , Antimalarials/therapeutic use , Folic Acid Antagonists/pharmacology , Humans , Malaria, Falciparum/parasitology , Malaria, Vivax/drug therapy , Peroxides , Plasmodium falciparum , Plasmodium vivax
12.
Antimicrob Agents Chemother ; 66(1): e0158421, 2022 01 18.
Article in English | MEDLINE | ID: mdl-34694880

ABSTRACT

Despite repeated malaria infection, individuals living in areas where malaria is endemic remain vulnerable to reinfection. The Janus kinase (JAK1/2) inhibitor ruxolitinib could potentially disrupt the parasite-induced dysfunctional immune response when administered with antimalarial therapy. This randomized, single-blind, placebo-controlled, single-center phase 1 trial investigated the safety, tolerability, and pharmacokinetic and pharmacodynamic profile of ruxolitinib and the approved antimalarial artemether-lumefantrine in combination. Ruxolitinib pharmacodynamics were assessed by inhibition of phosphorylation of signal transducer and activator of transcription 3 (pSTAT3). Eight healthy male and female participants ages 18 to 55 years were randomized to either ruxolitinib (20 mg) (n = 6) or placebo (n = 2) administered 2 h after artemether-lumefantrine (80/480 mg) twice daily for 3 days. Mild adverse events occurred in six participants (four ruxolitinib; two placebo). The combination of artemether-lumefantrine and ruxolitinib was well tolerated, with adverse events and pharmacokinetics consistent with the known profiles of both drugs. The incidence of adverse events and artemether, dihydroartemisinin (the major active metabolite of artemether), and lumefantrine exposure were not affected by ruxolitinib coadministration. Ruxolitinib coadministration resulted in a 3-fold-greater pSTAT3 inhibition compared to placebo (geometric mean ratio = 3.01 [90% confidence interval = 2.14 to 4.24]), with a direct and predictable relationship between ruxolitinib plasma concentrations and %pSTAT3 inhibition. This study supports the investigation of the combination of artemether-lumefantrine and ruxolitinib in healthy volunteers infected with Plasmodium falciparum malaria. (This study has been registered at ClinicalTrials.gov under registration no. NCT04456634.).


Subject(s)
Antimalarials , Malaria, Falciparum , Adolescent , Adult , Antimalarials/adverse effects , Artemether/therapeutic use , Artemether, Lumefantrine Drug Combination/therapeutic use , Drug Combinations , Ethanolamines/therapeutic use , Female , Fluorenes/therapeutic use , Humans , Lumefantrine/therapeutic use , Malaria, Falciparum/drug therapy , Male , Middle Aged , Nitriles , Pyrazoles , Pyrimidines , Single-Blind Method , Young Adult
13.
Bioanalysis ; 13(23): 1761-1777, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34779650

ABSTRACT

Aim: ZY-19489 is a new antimalarial drug candidate and selective LC-MS/MS method was established for estimation of ZY-19489 and its metabolite in human plasma. Materials & methods: LLE was employed for extraction, mass spectrometric quantification performed using positive ionization mode and DCP-IMP was used as an internal standard. The chromatographic separation was achieved using mobile phase 5 mM ammonium formate in water and 0.1% v/v ammonia solution in methanol:acetonitrile (90:10% v/v) and column Agilent Zorbex Extended C18, 3.5 µm, 100 × 4.6 mm with a 6-min run time. Results: The calibration curve of ZY-19489 was linear over range 1-500 ng/ml and 2-200 ng/ml for metabolite. Assay was reproducible, selective and devoid of matrix effect. Conclusion: The validated assay was implemented for clinical sample analysis derived from healthy human subjects and parasitemia-induced subjects.


Subject(s)
Antimalarials , Chromatography, High Pressure Liquid , Tandem Mass Spectrometry , Humans , Antimalarials/blood , Antimalarials/metabolism , Antimalarials/standards , Calibration , Chromatography, High Pressure Liquid/standards , Half-Life , Reproducibility of Results , Tandem Mass Spectrometry/standards
15.
ACS Infect Dis ; 7(7): 1885-1893, 2021 07 09.
Article in English | MEDLINE | ID: mdl-34101429

ABSTRACT

OZ439 is a potent synthetic ozonide evaluated for the treatment of uncomplicated malaria. The metabolite profile of OZ439 was characterized in vitro using human liver microsomes combined with LC/MS-MS, chemical derivatization, and metabolite synthesis. The primary biotransformations were monohydroxylation at the three distal carbon atoms of the spiroadamantane substructure, with minor contributions from N-oxidation of the morpholine nitrogen and deethylation cleavage of the morpholine ring. Secondary transformations resulted in the formation of dihydroxylation metabolites and metabolites containing both monohydroxylation and morpholine N-oxidation. With the exception of two minor metabolites, none of the other metabolites had appreciable antimalarial activity. Reaction phenotyping indicated that CYP3A4 is the enzyme responsible for the metabolism of OZ439, and it was found to inhibit CYP3A via both direct and mechanism-based inhibition. Elucidation of the metabolic pathways and kinetics will assist with efforts to predict potential metabolic drug-drug interactions and support physiologically based pharmacokinetic (PBPK) modeling.


Subject(s)
Antimalarials , Cytochrome P-450 CYP3A , Cytochrome P-450 Enzyme System , Humans , Microsomes, Liver , Peroxides
16.
Article in English | MEDLINE | ID: mdl-33526486

ABSTRACT

Ensuring continued success against malaria depends on a pipeline of new antimalarials. Antimalarial drug development utilizes preclinical murine and experimental human malaria infection studies to evaluate drug efficacy. A sequential approach is typically adapted, with results from each stage informing the design of the next stage of development. The validity of this approach depends on confidence that results from murine malarial studies predict the outcome of clinical trials in humans. Parasite clearance rates following treatment are key parameters of drug efficacy. To investigate the validity of forward predictions, we developed a suite of mathematical models to capture parasite growth and drug clearance along the drug development pathway and estimated parasite clearance rates. When comparing the three infection experiments, we identified different relationships of parasite clearance with dose and different maximum parasite clearance rates. In Plasmodium berghei-NMRI mouse infections, we estimated a maximum parasite clearance rate of 0.2 (1/h); in Plasmodium falciparum-SCID mouse infections, 0.05 (1/h); and in human volunteer infection studies with P. falciparum, we found a maximum parasite clearance rate of 0.12 (1/h) and 0.18 (1/h) after treatment with OZ439 and MMV048, respectively. Sensitivity analysis revealed that host-parasite driven processes account for up to 25% of variance in parasite clearance for medium-high doses of antimalarials. Although there are limitations in translating parasite clearance rates across these experiments, they provide insight into characterizing key parameters of drug action and dose response and assist in decision-making regarding dosage for further drug development.


Subject(s)
Antimalarials , Malaria, Falciparum , Parasites , Animals , Antimalarials/pharmacology , Antimalarials/therapeutic use , Malaria, Falciparum/drug therapy , Mice , Mice, SCID , Plasmodium berghei , Plasmodium falciparum
17.
Clin Transl Sci ; 14(2): 712-719, 2021 03.
Article in English | MEDLINE | ID: mdl-33326705

ABSTRACT

Volunteer infection studies using the induced blood stage malaria (IBSM) model have been shown to facilitate antimalarial drug development. Such studies have traditionally been undertaken in single-dose cohorts, as many as necessary to obtain the dose-response relationship. To enhance ethical and logistic aspects of such studies, and to reduce the number of cohorts needed to establish the dose-response relationship, we undertook a retrospective in silico analysis of previously accrued data to improve study design. A pharmacokinetic (PK)/pharmacodynamic (PD) model was developed from initial fictive-cohort data for OZ439 (mixing the data of the three single-dose cohorts as: n = 2 on 100 mg, 2 on 200 mg, and 4 on 500 mg). A three-compartment model described OZ439 PKs. Net growth of parasites was modeled using a Gompertz function and drug-induced parasite death using a Hill function. Parameter estimates for the PK and PD models were comparable for the multidose single-cohort vs. the pooled analysis of all cohorts. Simulations based on the multidose single-cohort design described the complete data from the original IBSM study. The novel design allows for the ascertainment of the PK/PD relationship early in the study, providing a basis for rational dose selection for subsequent cohorts and studies.


Subject(s)
Antimalarials/administration & dosage , Clinical Trials, Phase I as Topic , Malaria/drug therapy , Models, Biological , Plasmodium/drug effects , Antimalarials/pharmacokinetics , Cohort Studies , Computer Simulation , Dose-Response Relationship, Drug , Healthy Volunteers , Humans , Malaria/parasitology , Plasmodium/pathogenicity , Research Design , Retrospective Studies
18.
PLoS Med ; 17(8): e1003203, 2020 08.
Article in English | MEDLINE | ID: mdl-32822347

ABSTRACT

BACKGROUND: Artemisinin resistance is threatening malaria control. We aimed to develop and test a human model of artemisinin-resistant (ART-R) Plasmodium falciparum to evaluate the efficacy of drugs against ART-R malaria. METHODS AND FINDINGS: We conducted 2 sequential phase 1, single-centre, open-label clinical trials at Q-Pharm, Brisbane, Australia, using the induced blood-stage malaria (IBSM) model, whereby healthy participants are intravenously inoculated with blood-stage parasites. In a pilot study, participants were inoculated (Day 0) with approximately 2,800 viable P. falciparum ART-R parasites. In a comparative study, participants were randomised to receive approximately 2,800 viable P. falciparum ART-R (Day 0) or artemisinin-sensitive (ART-S) parasites (Day 1). In both studies, participants were administered a single approximately 2 mg/kg oral dose of artesunate (AS; Day 9). Primary outcomes were safety, ART-R parasite infectivity, and parasite clearance. In the pilot study, 2 participants were enrolled between April 27, 2017, and September 12, 2017, and included in final analyses (males n = 2 [100%], mean age = 26 years [range, 23-28 years]). In the comparative study, 25 participants were enrolled between October 26, 2017, and October 18, 2018, of whom 22 were inoculated and included in final analyses (ART-R infected participants: males n = 7 [53.8%], median age = 22 years [range, 18-40 years]; ART-S infected participants: males n = 5 [55.6%], median age = 28 years [range, 22-35 years]). In both studies, all participants inoculated with ART-R parasites became parasitaemic. A total of 36 adverse events were reported in the pilot study and 277 in the comparative study. Common adverse events in both studies included headache, pyrexia, myalgia, nausea, and chills; none were serious. Seven participants experienced transient severe falls in white cell counts and/or elevations in liver transaminase levels which were considered related to malaria. Additionally, 2 participants developed ventricular extrasystoles that were attributed to unmasking of a predisposition to benign fever-induced tachyarrhythmia. In the comparative study, parasite clearance half-life after AS was significantly longer for ART-R infected participants (n = 13, 6.5 hours; 95% confidence interval [CI] 6.3-6.7 hours) compared with ART-S infected participants (n = 9, 3.2 hours; 95% CI 3.0-3.3 hours; p < 0.001). The main limitation of this study was that the ART-R and ART-S parasite strains did not share the same genetic background. CONCLUSIONS: We developed the first (to our knowledge) human model of ART-R malaria. The delayed clearance profile of ART-R parasites after AS aligns with field study observations. Although based on a relatively small sample size, results indicate that this model can be safely used to assess new drugs against ART-R P. falciparum. TRIAL REGISTRATION: The studies were registered with the Australian New Zealand Clinical Trials Registry: ACTRN12617000244303 (https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?id=372357) and ACTRN12617001394336 (https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?id=373637).


Subject(s)
Anti-Infective Agents/therapeutic use , Antimalarials/therapeutic use , Artemisinins/therapeutic use , Malaria, Falciparum/blood , Malaria, Falciparum/drug therapy , Plasmodium falciparum/metabolism , Adolescent , Adult , Animals , Anti-Infective Agents/adverse effects , Anti-Infective Agents/pharmacology , Antimalarials/adverse effects , Antimalarials/pharmacology , Artemisinins/adverse effects , Artemisinins/pharmacology , Artesunate/adverse effects , Artesunate/pharmacology , Artesunate/therapeutic use , Australia/epidemiology , Female , Headache/chemically induced , Healthy Volunteers , Humans , Malaria, Falciparum/epidemiology , Male , Nausea/chemically induced , Parasites/metabolism , Pilot Projects , Young Adult
19.
Clin Pharmacol Ther ; 108(5): 1055-1066, 2020 11.
Article in English | MEDLINE | ID: mdl-32415986

ABSTRACT

Chloroquine has been used for the treatment of malaria for > 70 years; however, chloroquine pharmacokinetic (PK) and pharmacodynamic (PD) profile in Plasmodium vivax malaria is poorly understood. The objective of this study was to describe the PK/PD relationship of chloroquine and its major metabolite, desethylchloroquine, in a P. vivax volunteer infection study. We analyzed data from 24 healthy subjects who were inoculated with blood-stage P. vivax malaria and administered a standard treatment course of chloroquine. The PK of chloroquine and desethylchloroquine was described by a two-compartment model with first-order absorption and elimination. The relationship between plasma and whole blood concentrations of chloroquine and P. vivax parasitemia was characterized by a PK/PD delayed response model, where the equilibration half-lives were 32.7 hours (95% confidence interval (CI) 27.4-40.5) for plasma data and 24.1 hours (95% CI 19.0-32.7) for whole blood data. The estimated parasite multiplication rate was 17 folds per 48 hours (95% CI 14-20) and maximum parasite killing rate by chloroquine was 0.213 hour-1 (95% CI 0.196-0.230), translating to a parasite clearance half-life of 4.5 hours (95% CI 4.1-5.0) and a parasite reduction ratio of 400 every 48 hours (95% CI 320-500). This is the first study that characterized the PK/PD relationship between chloroquine plasma and whole blood concentrations and P. vivax clearance using a semimechanistic population PK/PD modeling. This PK/PD model can be used to optimize dosing scenarios and to identify optimal dosing regimens for chloroquine where resistance to chloroquine is increasing.


Subject(s)
Antimalarials/pharmacokinetics , Chloroquine/pharmacokinetics , Malaria, Vivax/drug therapy , Plasmodium vivax/drug effects , Administration, Oral , Adult , Antimalarials/administration & dosage , Antimalarials/blood , Biotransformation , Chloroquine/administration & dosage , Chloroquine/analogs & derivatives , Chloroquine/blood , Drug Dosage Calculations , Drug Resistance , Female , Humans , Malaria, Vivax/blood , Malaria, Vivax/diagnosis , Malaria, Vivax/parasitology , Male , Models, Biological , Parasite Load , Plasmodium vivax/growth & development , Treatment Outcome , Young Adult
20.
Lancet Infect Dis ; 20(8): 964-975, 2020 08.
Article in English | MEDLINE | ID: mdl-32275867

ABSTRACT

BACKGROUND: (+)-SJ000557733 (SJ733) is a novel, orally bioavailable inhibitor of Plasmodium falciparum ATP4. In this first-in-human and induced blood-stage malaria phase 1a/b trial, we investigated the safety, tolerability, pharmacokinetics, and antimalarial activity of SJ733 in humans. METHODS: The phase 1a was a single-centre, dose-escalation, first-in-human study of SJ733 allowing modifications to dose increments and dose-cohort size on the basis of safety and pharmacokinetic results. The phase 1a took place at St Jude Children's Research Hospital and at the University of Tennessee Clinical Research Center (Memphis, TN, USA). Enrolment in more than one non-consecutive dose cohort was allowed with at least 14 days required between doses. Participants were fasted in seven dose cohorts and fed in one 600 mg dose cohort. Single ascending doses of SJ733 (75, 150, 300, 600, 900, or 1200 mg) were administered to participants, who were followed up for 14 days after SJ733 dosing. Phase 1a primary endpoints were safety, tolerability, and pharmacokinetics of SJ733, and identification of an SJ733 dose to test in the induced blood-stage malaria model. The phase 1b was a single-centre, open-label, volunteer infection study using the induced blood-stage malaria model in which fasted participants were intravenously infected with blood-stage P falciparum and subsequently treated with a single dose of SJ733. Phase 1b took place at Q-Pharm (Herston, QLD, Australia) and was initiated only after phase 1a showed that exposure exceeding the threshold minimum exposure could be safely achieved in humans. Participants were inoculated on day 0 with P falciparum-infected human erythrocytes (around 2800 parasites in the 150 mg dose cohort and around 2300 parasites in the 600 mg dose cohort), and parasitaemia was monitored before malaria inoculation, after inoculation, immediately before SJ733 dosing, and then post-dose. Participants were treated with SJ733 within 24 h of reaching 5000 parasites per mL or at a clinical score higher than 6. Phase 1b primary endpoints were calculation of a parasite reduction ratio (PRR48) and parasite clearance half-life, and safety and tolerability of SJ733 (incidence, severity, and drug-relatedness of adverse events). In both phases of the trial, SJ733 hydrochloride salt was formulated as a powder blend in capsules containing 75 mg or 300 mg for oral administration. Healthy men and women (of non-childbearing potential) aged 18-55 years were eligible for both studies. Both studies are registered with ClinicalTrials.gov (NCT02661373 for the phase 1a and NCT02867059 for the phase 1b). FINDINGS: In the phase 1a, 23 healthy participants were enrolled and received one to three non-consecutive doses of SJ733 between March 14 and Dec 7, 2016. SJ733 was safe and well tolerated at all doses and in fasted and fed conditions. 119 adverse events were recorded: 54 (45%) were unrelated, 63 (53%) unlikely to be related, and two (2%) possibly related to SJ733. In the phase 1b, 17 malaria-naive, healthy participants were enrolled. Seven participants in the 150 mg dose cohort were inoculated and dosed with SJ733. Eight participants in the 600 mg dose cohort were inoculated, but two participants could not be dosed with SJ733. Two additional participants were subsequently inoculated and dosed with SJ733. SJ733 exposure increased proportional to the dose through to the 600 mg dose, then was saturable at higher doses. Fasted participants receiving 600 mg exceeded the target area under the concentration curve extrapolated to infinity (AUC0-∞) of 13 000 µg × h/L (median AUC0-∞ 24 283 [IQR 16 135-31 311] µg × h/L, median terminal half-life 17·4 h [IQR 16·1-24·0], and median timepoint at which peak plasma concentration is reached 1·0 h [0·6-1·3]), and this dose was tested in the phase 1b. All 15 participants dosed with SJ733 had at least one adverse event. Of the 172 adverse events recorded, 128 (74%) were mild. The only adverse event attributed to SJ733 was mild bilateral foot paraesthesia that lasted 3·75 h and resolved spontaneously. The most common adverse events were related to malaria. Based on parasite clearance half-life, the derived log10PRR48 and corresponding parasite clearance half-lives were 2·2 (95% CI 2·0-2·5) and 6·47 h (95% CI 5·88-7·18) for 150 mg, and 4·1 (3·7-4·4) and 3·56 h (3·29-3·88) for 600 mg. INTERPRETATION: The favourable pharmacokinetic, tolerability, and safety profile of SJ733, and rapid antiparasitic effect support its development as a fast-acting component of combination antimalarial therapy. FUNDING: Global Health Innovative Technology Fund, Medicines for Malaria Venture, and the American Lebanese Syrian Associated Charities.


Subject(s)
Antimalarials/therapeutic use , Heterocyclic Compounds, 4 or More Rings/therapeutic use , Isoquinolines/therapeutic use , Malaria, Falciparum/drug therapy , Malaria, Falciparum/parasitology , Plasmodium falciparum/drug effects , Proton Pump Inhibitors/therapeutic use , Adult , Antimalarials/administration & dosage , Antimalarials/adverse effects , Antimalarials/pharmacokinetics , Case-Control Studies , Erythrocytes/drug effects , Erythrocytes/parasitology , Female , H(+)-K(+)-Exchanging ATPase/metabolism , Heterocyclic Compounds, 4 or More Rings/administration & dosage , Heterocyclic Compounds, 4 or More Rings/adverse effects , Heterocyclic Compounds, 4 or More Rings/pharmacokinetics , Humans , Isoquinolines/administration & dosage , Isoquinolines/adverse effects , Isoquinolines/pharmacokinetics , Life Cycle Stages/drug effects , Male , Middle Aged , Plasmodium falciparum/growth & development , Plasmodium falciparum/metabolism , Proton Pump Inhibitors/administration & dosage , Proton Pump Inhibitors/adverse effects , Proton Pump Inhibitors/pharmacokinetics , Treatment Outcome , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...