Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 124(13): 133202, 2020 Apr 03.
Article in English | MEDLINE | ID: mdl-32302186

ABSTRACT

The spatially dependent phase distribution of focused few-cycle pulses, i.e., the focal phase, is much more complex than the well-known Gouy phase of monochromatic beams. As the focal phase is imprinted on the carrier-envelope phase (CEP), for accurate modeling and interpretation of CEP-dependent few-cycle laser-matter interactions, both the coupled spatially dependent phase and intensity distributions must be taken into account. In this Letter, we demonstrate the significance of the focal phase effect via comparison of measurements and simulations of CEP-dependent photoelectron spectra. Moreover, we demonstrate the impact of this effect on few-cycle light-matter interactions as a function of their nonlinear intensity dependence to answer the general question: if, when, and how much should one be concerned about the focal phase?

2.
Phys Rev Lett ; 121(7): 073203, 2018 Aug 17.
Article in English | MEDLINE | ID: mdl-30169106

ABSTRACT

The laser-induced fragmentation dynamics of this most fundamental polar molecule HeH^{+} are measured using an ion beam of helium hydride and an isotopologue at various wavelengths and intensities. In contrast to the prevailing interpretation of strong-field fragmentation, in which stretching of the molecule results primarily from laser-induced electronic excitation, experiment and theory for nonionizing dissociation, single ionization, and double ionization both show that the direct vibrational excitation plays the decisive role here. We are able to reconstruct fragmentation pathways and determine the times at which each ionization step occurs as well as the bond length evolution before the electron removal. The dynamics of this extremely asymmetric molecule contrast the well-known symmetric systems leading to a more general picture of strong-field molecular dynamics and facilitating interpolation to systems between the two extreme cases.

3.
Opt Lett ; 42(24): 5150-5153, 2017 Dec 15.
Article in English | MEDLINE | ID: mdl-29240160

ABSTRACT

A high-precision, single-shot, and real-time carrier-envelope phase (CEP) measurement at 1.8 µm laser wavelength based on stereographic photoelectron spectroscopy is presented. A precision of the CEP measurement of 120 mrad for each and every individual laser shot for a 1 kHz pulse train with randomly varying CEP is demonstrated. Simultaneous to the CEP measurement, the pulse lengths are characterized by evaluating the spatial asymmetry of the measured above-threshold ionization (ATI) spectra of xenon and referenced to a standard pulse-duration measurement based on frequency-resolved optical gating. The validity of the CEP measurement is confirmed by implementing phase tagging for a CEP-dependent measurement of ATI in xenon with high energy resolution.

4.
Opt Express ; 25(6): 6936-6944, 2017 Mar 20.
Article in English | MEDLINE | ID: mdl-28381035

ABSTRACT

A quasi-supercontinuum source in the extreme ultraviolet (XUV) is demonstrated using a table-top femtosecond laser and a tunable optical parametric amplifier (OPA) as a driver for high-harmonic generation (HHG). The harmonic radiation, which is usually a comb of odd multiples of the fundamental frequency, is generated by near-infrared (NIR) laser pulses from the OPA. A quasi-continuous XUV spectrum in the range of 30 to 100 eV is realized by averaging over multiple harmonic comb spectra with slightly different fundamental frequencies and thus different spectral spacing between the individual harmonics. The driving laser wavelength is swept automatically during an averaging time period. With a total photon flux of 4×109 photons/s in the range of 30 eV to 100 eV and 1×107photons/s in the range of 100 eV to 200 eV, the resulting quasi-supercontinuum XUV source is suited for applications such as XUV coherence tomography (XCT) or near-edge absorption fine structure spectroscopy (NEXAFS).

SELECTION OF CITATIONS
SEARCH DETAIL
...