Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
1.
Curr Oncol ; 31(5): 2679-2688, 2024 05 09.
Article in English | MEDLINE | ID: mdl-38785484

ABSTRACT

The use of hypofractionated radiotherapy in prostate cancer has been increasingly evaluated, whereas accumulated evidence demonstrates comparable oncologic outcomes and toxicity rates compared to normofractionated radiotherapy. In this prospective study, we evaluate all patients with intermediate-risk prostate cancer treated with ultrahypofractionated (UHF) MRI-guided radiotherapy on a 1.5 T MR-Linac within our department and report on workflow and feasibility, as well as physician-recorded and patient-reported longitudinal toxicity. A total of 23 patients with intermediate-risk prostate cancer treated on the 1.5 T MR-Linac with a dose of 42.7 Gy in seven fractions (seven MV step-and-shoot IMRT) were evaluated within the MRL-01 study (NCT04172753). The duration of each treatment step, choice of workflow (adapt to shape-ATS or adapt to position-ATP) and technical and/or patient-sided treatment failure were recorded for each fraction and patient. Acute and late toxicity were scored according to RTOG and CTC V4.0, as well as the use of patient-reported questionnaires. The median follow-up was 12.4 months. All patients completed the planned treatment. The mean duration of a treatment session was 38.2 min. In total, 165 radiotherapy fractions were delivered. ATS was performed in 150 fractions, 5 fractions were delivered using ATP, and 10 fractions were delivered using both ATS and ATP workflows. Severe acute bother (G3+) regarding IPS-score was reported in five patients (23%) at the end of radiotherapy. However, this tended to normalize and no G3+ IPS-score was observed later at any point during follow-up. Furthermore, no other severe genitourinary (GU) or gastrointestinal (GI) acute or late toxicity was observed. One-year biochemical-free recurrence survival was 100%. We report the excellent feasibility of UHF MR-guided radiotherapy for intermediate-risk prostate cancer patients and acceptable toxicity rates in our preliminary study. Randomized controlled studies with long-term follow-up are warranted to detect possible advantages over current state-of-the-art RT techniques.


Subject(s)
Prostatic Neoplasms , Radiotherapy, Image-Guided , Humans , Male , Prostatic Neoplasms/radiotherapy , Prospective Studies , Aged , Radiotherapy, Image-Guided/methods , Middle Aged , Magnetic Resonance Imaging/methods , Radiation Dose Hypofractionation , Aged, 80 and over
2.
Phys Imaging Radiat Oncol ; 29: 100534, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38298884

ABSTRACT

Background and purpose: Daily online treatment plan adaptation requires a fast workflow and planning process. Current online planning consists of adaptation of a predefined reference plan, which might be suboptimal in cases of large anatomic changes. The aim of this study was to investigate plan quality differences between the current online re-planning approach and a complete re-optimization. Material and methods: Magnetic resonance linear accelerator reference plans for ten prostate cancer patients were automatically generated using particle swarm optimization (PSO). Adapted plans were created for each fraction using (1) the current re-planning approach and (2) full PSO re-optimization and evaluated overall compliance with institutional dose-volume criteria compared to (3) clinically delivered fractions. Relative volume differences between reference and daily anatomy were assessed for planning target volumes (PTV60, PTV57.6), rectum and bladder and correlated with dose-volume results. Results: The PSO approach showed significantly higher adherence to dose-volume criteria than the reference approach and clinical fractions (p < 0.001). In 74 % of PSO plans at most one criterion failed compared to 56 % in the reference approach and 41 % in clinical plans. A fair correlation between PTV60 D98% and relative bladder volume change was observed for the reference approach. Bladder volume reductions larger than 50 % compared to the reference plan recurrently decreased PTV60 D98% below 56 Gy. Conclusion: Complete re-optimization maintained target coverage and organs at risk sparing even after large anatomic variations. Re-planning based on daily magnetic resonance imaging was sufficient for small variations, while large variations led to decreasing target coverage and organ-at-risk sparing.

3.
Clin Transl Radiat Oncol ; 37: 153-156, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36339638

ABSTRACT

Introduction: Non-surgical management of rectal cancer aiming for organ-preservation is an important development to improve rectal cancer treatment. Dose escalated radiotherapy represents one approach to increase clinical complete response (cCR) rates. In the present study we present feasibility and outcome data on rectal cancer patients who were treated with dose escalated radiotherapy using an MR guided online response-adaptive workflow. Material and methods: A total of five patients were treated with 45 Gy in 25 fractions to the mesorectum and the internal iliac lymph nodes and a simultaneous integrated boost to the primary tumor with 50 Gy in 25 fractions on a conventional linac. In addition, weekly response-adaptive boost fractions with 3 Gy per fraction were scheduled on a 1.5 T MR-Linac. Concomitant chemotherapy with 5-fluorouracil was given as continuous venous infusion during the first and last week of treatment. Response was evaluated approximately-three months after the end of treatment and surgery was omitted in case of a clinical complete response (cCR) or a near cCR. Toxicity was graded by using PRO-CTCAE, Quality of life by the EORTC-QLQ-C30 questionnaire and continence according to the Wexner scale. Results: Response-adaptive dose escalated radiotherapy was feasible and well tolerated by all patients. Four reached a clinical complete response, one had a local excision confirming pathological complete response (pCR). All PRO-CTCAE grade 3 toxicities resolved within six months after the end of treatment. Quality of life and continence scores during follow-up were comparable to baseline levels. Conclusion: Dose-escalated online response-adaptive MR-guided radiotherapy appears to be a very promising treatment with the goal of organ preservation in rectal cancer leading to high response rates, excellent organ function and limited side effects. Further prospective evaluation is needed.

4.
Radiother Oncol ; 164: 37-42, 2021 11.
Article in English | MEDLINE | ID: mdl-34534612

ABSTRACT

INTRODUCTION: Dose escalated radiotherapy has previously been investigated as a strategy to increase complete response rates in rectal cancer. However large safety margins are required using cone-beam computed tomography guided radiotherapy leading to high doses to organs at risk or insufficient target volume coverage in order to keep dose constraints. We herein present the first clinical application of a new technique for dose escalation in rectal cancer using online magnetic resonance (MR)-guidance and rectal ultrasound gel filling. METHODS: A 73-year-old patient with distal cT3a cN0 cM0 rectal cancer was referred for definitive radiochemotherapy with the goal of organ preservation after multidisciplinary discussion. A dose of 45 Gy in 25 fractions with a stereotactic integrated boost to the primary tumor of 50 Gy with concomitant 5-fluorouracil was prescribed. Furthermore, a boost to the primary tumor with 3 Gy per fraction using the adapt-to-shape workflow on a 1.5 T MR-Linac was planned once weekly. For the boost fractions 100 cc of ultrasound gel was applied rectally in order to improve tumor visibility and distancing of uninvolved rectal mucosa. In order to determine the required planning target volume margin diagnostic scans of ten rectal cancer patients conducted with rectal ultrasound gel filling were studied. RESULTS: Based on the ten diagnostic scans an average isotropic margin of 4 mm was found to be sufficient to cover 95% of the target volume during an online adaptive workflow. Three boost fractions were applied, mean treatment duration was 22:34 min. Treatment was well tolerated by the patient with no more than PRO-CTCAE grade I° toxicity of any kind. The rectal ultrasound gel filling resulted in superior visibility of the tumor and reduced the dose to the involved mucosa especially in the high dose range compared with a boost plan calculated without any filling. A considerable tumor shrinkage was observed during treatment from 17.43 cc at baseline to 4 cc in week four. CONCLUSION: This novel method appears to be a simple but effective strategy for dose escalated radiotherapy in rectal cancer. Based on the encouraging observation, a prospective trial is currently under preparation.


Subject(s)
Radiotherapy, Intensity-Modulated , Rectal Neoplasms , Aged , Humans , Magnetic Resonance Imaging , Magnetic Resonance Spectroscopy , Prospective Studies , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted , Rectal Neoplasms/diagnostic imaging , Rectal Neoplasms/radiotherapy
5.
Phys Imaging Radiat Oncol ; 19: 6-12, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34307914

ABSTRACT

BACKGROUND AND PURPOSE: Hybrid magnetic resonance linear accelerator (MR-Linac) systems represent a novel technology for online adaptive radiotherapy. 3D secondary dose calculation (SDC) of online adapted plans is required to assure patient safety. Currently, no 3D-SDC solution is available for 1.5T MR-Linac systems. Therefore, the aim of this project was to develop and validate a method for online automatic 3D-SDC for adaptive MR-Linac treatments. MATERIALS AND METHODS: An accelerator head model was designed for an 1.5T MR-Linac system, neglecting the magnetic field. The use of this model for online 3D-SDC of MR-Linac plans was validated in a three-step process: (1) comparison to measured beam data, (2) investigation of performance and limitations in a planning phantom and (3) clinical validation using n = 100 patient plans from different tumor entities, comparing the developed 3D-SDC with experimental plan QA. RESULTS: The developed model showed median gamma passing rates compared to MR-Linac base data of 84.7%, 100% and 99.1% for crossplane, inplane and depth-dose-profiles, respectively. Comparison of 3D-SDC and full dose calculation in a planning phantom revealed that with ⩾ 5 beams gamma passing rates > 95% can be achieved for central target locations. With a median calculation time of 1:23 min, 3D-SDC of online adapted clinical MR-Linac plans demonstrated a median gamma passing rate of 98.9% compared to full dose calculation, whereas experimental plan QA reached 99.5%. CONCLUSION: Here, we describe the first technical 3D-SDC solution for online adaptive MR-guided radiotherapy. For clinical situations with peripheral targets and a small number of beams additional verification appears necessary. Further improvement may include 3D-SDC with consideration of the magnetic field.

6.
Front Oncol ; 11: 616156, 2021.
Article in English | MEDLINE | ID: mdl-33816247

ABSTRACT

Based on the development of new hybrid machines consisting of an MRI and a linear accelerator, magnetic resonance image guided radiotherapy (MRgRT) has revolutionized the field of adaptive treatment in recent years. Although an increasing number of studies have been published, investigating technical and clinical aspects of this technique for various indications, utilizations of MRgRT for adaptive treatment of head and neck cancer (HNC) remains in its infancy. Yet, the possible benefits of this novel technology for HNC patients, allowing for better soft-tissue delineation, intra- and interfractional treatment monitoring and more frequent plan adaptations appear more than obvious. At the same time, new technical, clinical, and logistic challenges emerge. The purpose of this article is to summarize and discuss the rationale, recent developments, and future perspectives of this promising radiotherapy modality for treating HNC.

7.
Pharmacogenomics J ; 21(1): 37-46, 2021 02.
Article in English | MEDLINE | ID: mdl-32546699

ABSTRACT

Identifying patients with locally advanced head and neck carcinoma on high risk of recurrence after definitive concurrent radiochemotherapy is of key importance for the selection for consolidation therapy and for individualized treatment intensification. In this multicenter study we analyzed recurrence-associated single-nucleotide polymorphisms (SNPs) in DNA repair genes in tumor DNA from 132 patients with locally advanced head and neck carcinoma (LadHnSCC). Patients were treated with definitive radiotherapy and simultaneous cisplatin-based chemotherapy at six partner sites of the German Cancer Consortium (DKTK) Radiation Oncology Group from 2005 to 2011. For validation, a group of 20 patients was available. Score selection method using proportional hazard analysis and leave-one-out cross-validation were performed to identify markers associated with outcome. The SNPs rs1799793 and rs13181 were associated with survival and the same SNPs and in addition rs17655 with freedom from loco-regional relapse (ffLRR) in the trainings datasets from all patients. The homozygote major rs1799793 genotype at the ERCC2 gene was associated with better (Hazard ratio (HR): 0.418 (0.234-0.744), p = 0.003) and the homozygote minor rs13181 genotype at ERCC2 with worse survival (HR: 2.074, 95% CI (1.177-3.658), p = 0.017) in comparison to the other genotypes. At the ffLRR endpoint, rs1799793 and rs13181 had comparable prognostic value. The rs1799793 and rs13181 genotypes passed the leave-one-out cross-validation procedure and associated with survival and ffLRR in patients with LadHnSCC treated with definitive radiochemotherapy. While findings were confirmed in a small validation dataset, further validation is underway within a prospective biomarker study of the DKTK.


Subject(s)
Cisplatin/administration & dosage , Neoplasm Recurrence, Local/drug therapy , Squamous Cell Carcinoma of Head and Neck/drug therapy , Xeroderma Pigmentosum Group D Protein/genetics , Adult , Aged , Aged, 80 and over , Chemoradiotherapy , Cisplatin/adverse effects , Disease-Free Survival , Female , Genetic Association Studies , Genotype , Humans , Male , Middle Aged , Neoplasm Recurrence, Local/radiotherapy , Polymorphism, Single Nucleotide/genetics , Prognosis , Squamous Cell Carcinoma of Head and Neck/genetics , Squamous Cell Carcinoma of Head and Neck/pathology , Squamous Cell Carcinoma of Head and Neck/radiotherapy
9.
Phys Imaging Radiat Oncol ; 15: 52-59, 2020 Jul.
Article in English | MEDLINE | ID: mdl-33043157

ABSTRACT

BACKGROUND AND PURPOSE: Hypoxia Positron-Emission-Tomography (PET) as well as Computed Tomography (CT) radiomics have been shown to be prognostic for radiotherapy outcome. Here, we investigate the stratification potential of CT-radiomics in head and neck cancer (HNC) patients and test if CT-radiomics is a surrogate predictor for hypoxia as identified by PET. MATERIALS AND METHODS: Two independent cohorts of HNC patients were used for model development and validation, HN1 (n = 149) and HN2 (n = 47). The training set HN1 consisted of native planning CT data whereas for the validation cohort HN2 also hypoxia PET/CT data was acquired using [18F]-Fluoromisonidazole (FMISO). Machine learning algorithms including feature engineering and classifier selection were trained for two-year loco-regional control (LRC) to create optimal CT-radiomics signatures.Secondly, a pre-defined [18F]FMISO-PET tumour-to-muscle-ratio (TMRpeak ≥ 1.6) was used for LRC prediction. Comparison between risk groups identified by CT-radiomics or [18F]FMISO-PET was performed using area-under-the-curve (AUC) and Kaplan-Meier analysis including log-rank test. RESULTS: The best performing CT-radiomics signature included two features with nearest-neighbour classification (AUC = 0.76 ± 0.09), whereas AUC was 0.59 for external validation. In contrast, [18F]FMISO TMRpeak reached an AUC of 0.66 in HN2. Kaplan-Meier analysis of the independent validation cohort HN2 did not confirm the prognostic value of CT-radiomics (p = 0.18), whereas for [18F]FMISO-PET significant differences were observed (p = 0.02). CONCLUSIONS: No direct correlation of patient stratification using [18F]FMISO-PET or CT-radiomics was found in this study. Risk groups identified by CT-radiomics or hypoxia PET showed only poor overlap. Direct assessment of tumour hypoxia using PET seems to be more powerful to stratify HNC patients.

10.
Phys Med Biol ; 65(16): 16NT01, 2020 08 13.
Article in English | MEDLINE | ID: mdl-32663819

ABSTRACT

MR-guided radiotherapy requires novel quality assurance (QA) methods for intensity-modulated radiotherapy treatment plans (TPs). Here, an optimized method for TPs for a 1.5 T MR-linac was developed and implemented clinically. A static solid phantom and an MR-compatible 2D ionization chamber array were used. The array's response with respect to the incident beam gantry angles was characterized for four different orientations of the array relative to the beam. A lookup table was created identifying the optimum orientation for each gantry angle. For the QA of clinical MR-linac TPs, beams were grouped according to their gantry angles and measured with up to four setups. The method was applied to n = 106 clinical TPs of 54 patients for different tumour entities. Reference plans and plans created in the online adaptive workflow were analysed, using a local 3%/3 mm gamma criterion for dose values larger than 30% of the maximum. Pass rates were averaged over all beam groups. The array's response strongly depends on the beam incidence angle. Optimum angles typically range from -10° to 80° around the phantom setup angle. Consequently, plan verification required up to four setups. For clinical MR-linac TPs, the overall median pass rate was 98.5% (range 88.6%-100%). Pass rates depended on the tumour entity. Median pass rates were for liver metastases stereotactic body radiotherapy 99.2%, prostate cancer 99%, pancreatic cancer 98.9%, lymph node metastases 98.7%, partial breast irradiation (PBI) 98%, head-and-neck cancer 97.7%, rectal cancer 94% and others 96.6%. 85% of plans were accepted straightaway, with pass rates above 95%. A single plan with a pass rate below 90% was subsequently verified with a modified method. Off-axis target volumes, e.g. PBI, were verified successfully using a lateral shift of the phantom. The method is suitable to verify reference and online adapted TPs for a 1.5 T MR-linac, including plans for off-axis target volumes.


Subject(s)
Particle Accelerators , Phantoms, Imaging , Radiometry/instrumentation , Radiotherapy Planning, Computer-Assisted , Radiotherapy, Intensity-Modulated/instrumentation , Humans , Male , Neoplasms/pathology , Neoplasms/radiotherapy , Quality Control , Radiosurgery , Radiotherapy Dosage
11.
Radiother Oncol ; 149: 189-196, 2020 08.
Article in English | MEDLINE | ID: mdl-32417350

ABSTRACT

BACKGROUND AND PURPOSE: Tumor hypoxia plays an important role in head and neck squamous cell carcinomas (HNSCC). Various positron emission tomography (PET) tracers promise non-invasive assessment of tumor hypoxia. So far, the applicability of hypoxia PET is hampered by monocentric imaging trials with few patients. MATERIALS AND METHODS: Multicenter individual patient data based meta-analysis of the original PET data from four prospective imaging trials was performed. All patients had localized disease and were treated with curatively intended radio(-chemo)therapy. Hypoxia PET imaging was performed with 18F-Fluoromisonidazole (FMISO, 102 patients) or 18F-Fluoroazomycin-arabinoside (FAZA, 51 patients). Impact of hypoxia PET parameters on loco-regional control (LRC) and overall survival (OS) was analyzed by uni- and multivariable Cox regression. RESULTS: Baseline characteristics between participating centers differed significantly, especially regarding T stage (p < 0.001), tumor volume (p < 0.001) and p16 status (p = 0.009). The commonly used hypoxia parameters, maximal tumor-to-muscle ratio (TMRmax) and hypoxic volume with 1.6 threshold (HV1.6), showed a strong association with LRC (p = 0.001) and OS (p < 0.001). These findings were irrespective of the radiotracer and the same cut-off values could be applied for FMISO and FAZA (TMRmax > 2.0 or HV1.6 > 1.5 ml). The effect size of TMRmax was similar for subgroups of patients defined by radiotracer, p16 status and FDG-PET parameters for LRC and OS, respectively. CONCLUSION: PET measured hypoxia is robust and has a strong impact on LRC and OS in HNSCC. The most commonly investigated tracers FMISO and FAZA can probably be used equivalently in multicenter trials. Optimal strategies to improve the dismal outcome of hypoxic tumors remain elusive.


Subject(s)
Head and Neck Neoplasms , Misonidazole , Cell Hypoxia , Head and Neck Neoplasms/diagnostic imaging , Head and Neck Neoplasms/therapy , Humans , Hypoxia , Misonidazole/analogs & derivatives , Multicenter Studies as Topic , Positron-Emission Tomography , Prospective Studies , Radiopharmaceuticals
12.
J Mol Diagn ; 22(6): 801-810, 2020 06.
Article in English | MEDLINE | ID: mdl-32247864

ABSTRACT

This article compares the expression and applicability of biomarkers, from single genes and gene signatures, identified in patients with locally advanced head and neck squamous cell carcinoma using the GeneChip Human Transcriptome Array 2.0, nCounter, and real-time PCR analyses. Two multicenter, retrospective cohorts of patients with head and neck squamous cell carcinoma from the German Cancer Consortium Radiation Oncology Group who received postoperative radiochemotherapy or primary radiochemotherapy were considered. Real-time PCR was performed for a limited number of 38 genes of the cohort who received postoperative radiochemotherapy only. Correlations between the methods were evaluated by the Spearman rank correlation coefficient. Patients were stratified based on the expression of putative cancer stem cell markers, hypoxia-associated gene signatures, and a previously developed seven-gene signature. Locoregional tumor control was compared between these patient subgroups using log-rank tests. Gene expressions obtained from nCounter analyses were moderately correlated to GeneChip analyses (median ρ = approximately 0.68). A higher correlation was obtained between nCounter analyses and real-time PCR (median ρ = 0.84). Significant associations with locoregional tumor control were observed for most of the considered biomarkers evaluated by GeneChip and nCounter analyses. In general, all applied biomarkers (single genes and gene signatures) classified approximately 70% to 85% of the patients similarly. Overall, gene signatures seem to be more robust and had a better transferability among different measurement methods.


Subject(s)
Chemoradiotherapy/methods , Gene Expression Profiling/methods , Gene Expression , Head and Neck Neoplasms/genetics , Head and Neck Neoplasms/therapy , Oligonucleotide Array Sequence Analysis/methods , Real-Time Polymerase Chain Reaction/methods , Squamous Cell Carcinoma of Head and Neck/genetics , Squamous Cell Carcinoma of Head and Neck/therapy , Adult , Aged , Aged, 80 and over , Biomarkers, Tumor/genetics , Female , Follow-Up Studies , Humans , Male , Middle Aged , Neoplasm Recurrence, Local , Prognosis , Retrospective Studies , Transcriptome , Young Adult
13.
Phys Imaging Radiat Oncol ; 16: 69-73, 2020 Oct.
Article in English | MEDLINE | ID: mdl-33458346

ABSTRACT

Many preclinical and clinical observations support that functional magnetic resonance imaging (MRI), such as diffusion weighted (DW) and dynamic contrast enhanced (DCE) MRI, might have a predictive value for radiotherapy. The aim of this review was to assess the current status of quantitative MRI on hybrid MR-Linacs. In a literature research, four publications were identified, investigating technical feasibility, accuracy, repeatability and reproducibility of DW and DCE-MRI in phantoms and first patients. Accuracy and short term repeatability was < 5% for DW-MRI in current MR-Linac systems. Consequently, quantitative imaging providing accurate and reproducible functional information seems possible in MR-Linacs.

14.
Radiother Oncol ; 145: 30-35, 2020 04.
Article in English | MEDLINE | ID: mdl-31874347

ABSTRACT

INTRODUCTION: External beam partial breast irradiation (PBI) provides equal oncological outcomes compared to whole breast irradiation when applied to patients with low risk tumours. Recently, linacs with an integrated magnetic resonance image-guidance system have become clinically available. Here we report the first-in-human PBI performed at the 1.5 T MR-Linac, with a focus on clinical feasibility and investigation of the air electron stream effect (ESE) and the electron return effect (ERE) in the presence of the 1.5 T magnetic field, which might influence the dose on the chin (out-of-field dose, due to the ESE), the skin and the lung/chest wall interface (in-field dose, ERE). METHODS: A 59 years old patient affected by a 15 mm unifocal grade 1 carcinoma not special type of the right breast staged pT1c pN0 cM0 was planned and treated at Unity 1.5 T MR-Linac. To investigate the ERE and the ESE, an MR-Linac treatment plan was simulated without considering the 1.5 T B field using a research version of Monaco (V. 5.19.03). In vivo dosimetry was performed using Gafchromic® EBT3 films placed on top and underneath a 1 cm bolus which was placed on the patient's chin. The plans with and without 1.5 T magnetic field were compared in terms of dose to the chin, to the skin and to the interface lung/chest wall. Finally, the dose on the chin measured with the in vivo dosimetry was compared with the dose calculated by Monaco. RESULTS: PBI using the 1.5 T MR-Linac was successfully performed with a 7 MV photon 7-beams IMRT step-and-shoot plan. The treatment was well tolerated, the patient developed a slight acute toxicity, i.e. breast skin erythema and breast oedema CTC V.4 grade 1. The plan with 1.5 T magnetic field documented a fractional dose of 0.17 Gy in the chin area (2.6 Gy in 15 fractions), which was reduced to 0.05 Gy (0.75 in 15 fractions) by the presence of 1 cm bolus. The simulated plan without magnetic field showed a dose reduced by 2.3 Gy in the chin area. With the in vivo dosimetry a fractional dose of, respectively, 0.12 Gy and 0.034 Gy on top and underneath the bolus were measured (1.8 and 0.51 Gy in 15 fractions). The plan with 1.5 T magnetic field showed a skin D2 of 40 Gy and a skin V35 of 40.2%, which were reduced to, respectively, 39.7 Gy and 24.9% in the simulation without magnetic field. At the interface lung/chest there were no differences in DVH statistics. CONCLUSION: PBI with the 1.5 T MR-Linac was performed for the first time. ESE is accurately calculated by the treatment planning system, can be effectively reduced with a 1 cm bolus and is comparable to dose of cone beam-CT based position verification. The additional dose caused by ERE is not associated with an increased risk of acute toxicity.


Subject(s)
Breast Neoplasms , Electrons , Breast Neoplasms/radiotherapy , Humans , Magnetic Resonance Imaging , Middle Aged , Particle Accelerators , Radiotherapy Planning, Computer-Assisted
15.
J Nucl Med ; 60(12): 1698-1704, 2019 12.
Article in English | MEDLINE | ID: mdl-31076504

ABSTRACT

Our purpose was to evaluate an imaging parameter-response relationship between the extent of tumor hypoxia quantified by dynamic 18F-fluoromisonidazole (18F-FMISO) PET/CT and the risk of relapse after radiotherapy in patients with head and neck cancer. Methods: Before a prospective cohort of 25 head and neck cancer patients started radiotherapy, they were examined with dynamic 18F-FMISO PET/CT 0-240 min after tracer injection. 18F-FMISO image parameters, including a hypoxia metric, MFMISO, derived from pharmacokinetic modeling of dynamic 18F-FMISO and maximum tumor-to-muscle ratio (TMRmax) at 4 h after injection, gross tumor volume (GTV), relative hypoxic volume based on MFMISO, and a logistic regression model combining GTV and TMRmax, were assessed and compared with a previous training cohort (n = 15). Dynamic 18F-FMISO was used to validate a tumor control probability model based on MFMISO The prognostic potential with respect to local control of all potential parameters was validated using the concordance index for univariate Cox regression models determined from the training cohort, in addition to Kaplan-Meier analysis including the log-rank test. Results: The tumor control probability model was confirmed, indicating that dynamic 18F-FMISO allows stratification of patients into different risk groups according to radiotherapy outcome. In this study, MFMISO was the only parameter that was confirmed as prognostic in the independent validation cohort (concordance index, 0.71; P = 0.004). All other investigated parameters, such as TMRmax, GTV, relative hypoxic volume, and the combination of GTV and TMRmax, were not able to stratify patient groups according to outcome in this validation cohort (P = not statistically significant). Conclusion: In this study, the relationship between MFMISO and the risk of relapse was prospectively validated. The data support further evaluation and external validation of dynamic 18F-FMISO PET/CT as a promising method for patient stratification and hypoxia-based radiotherapy personalization, including dose painting.


Subject(s)
Head and Neck Neoplasms/diagnostic imaging , Head and Neck Neoplasms/radiotherapy , Misonidazole/analogs & derivatives , Positron Emission Tomography Computed Tomography , Aged , Female , Humans , Male , Middle Aged , Probability , Prospective Studies
16.
Strahlenther Onkol ; 195(4): 327-334, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30361744

ABSTRACT

PURPOSE: To compare radiotherapy treatments plans in esophageal cancer calculated for a high-field magnetic resonance imaging (MRI)-linac with plans for a conventional linac. MATERIALS AND METHODS: Ten patients with esophageal squamous cell carcinomas were re-planned retrospectively using the research version of Monaco (V 5.19.03, Elekta AB, Stockholm, Sweden). Intensity modulated radiotherapy (IMRT) plans with a nine-field step-and-shoot technique and two-arc volumetric modulated arc therapy (VMAT) plans were created for the Elekta MRI-linac and a conventional linac, respectively. The prescribed dose was 60 Gy to the primary tumor (PTV60) and 50 Gy to elective volumes (PTV50). Plans were optimized for optimal coverage of the 60 Gy volume and compared using dose-volume histogram parameters. RESULTS: All calculated treatment plans met predefined criteria for target volume coverage and organs at risk dose both for MRI-linac and conventional linac. Plans for the MRI-linac had a lower number of segments and monitor units. No significant differences between both plans were seen in terms of V20Gy of the lungs and V40Gy of the heart with slightly higher mean doses to the heart (14.0 Gy vs. 12.5 Gy) and lungs (12.8 Gy vs. 12.2 Gy). CONCLUSION: Applying conventional target volume and margin concepts as well as dose-fractionation prescription reveals clinically acceptable dose distributions using hybrid MRI-linac in its current configuration compared to standard IMRT/VMAT. This represents an important prerequisite for future studies to investigate the clinical benefit of MRI-guided radiotherapy exploiting the conceptional advantages such as reduced margins, plan adaptation and biological individualization and hypofractionation.


Subject(s)
Carcinoma, Squamous Cell/radiotherapy , Esophageal Neoplasms/radiotherapy , Magnetic Resonance Imaging , Particle Accelerators , Radiotherapy Planning, Computer-Assisted/methods , Carcinoma, Squamous Cell/diagnostic imaging , Carcinoma, Squamous Cell/pathology , Esophageal Neoplasms/diagnostic imaging , Esophageal Neoplasms/pathology , Feasibility Studies , Female , Humans , Lymphatic Metastasis/pathology , Lymphatic Metastasis/radiotherapy , Male , Neoplasm Staging , Organs at Risk , Radiotherapy Dosage , Radiotherapy, Intensity-Modulated/methods , Retrospective Studies
17.
Radiother Oncol ; 128(3): 485-491, 2018 09.
Article in English | MEDLINE | ID: mdl-29747873

ABSTRACT

BACKGROUND AND PURPOSE: Functional PET/MRI has great potential to improve radiotherapy planning (RTP). However, data integration requires imaging with radiotherapy-specific patient positioning. Here, we investigated the feasibility and image quality of radiotherapy-customized PET/MRI in head-and-neck cancer (HNC) patients using a dedicated hardware setup. MATERIAL AND METHODS: Ten HNC patients were examined with simultaneous PET/MRI before treatment, with radiotherapy and diagnostic scan setup, respectively. We tested feasibility of radiotherapy-specific patient positioning and compared the image quality between both setups by pairwise image analysis of 18F-FDG-PET, T1/T2-weighted and diffusion-weighted MRI. For image quality assessment, similarity measures including average symmetric surface distance (ASSD) of PET and MR-based tumor contours, MR signal-to-noise ratio (SNR) and mean apparent diffusion coefficient (ADC) value were used. RESULTS: PET/MRI in radiotherapy position was feasible - all patients were successfully examined. ASSD (median/range) of PET and MR contours was 0.6 (0.4-1.2) and 0.9 (0.5-1.3) mm, respectively. For T2-weighted MRI, a reduced SNR of -26.2% (-39.0--11.7) was observed with radiotherapy setup. No significant difference in mean ADC was found. CONCLUSIONS: Simultaneous PET/MRI in HNC patients using radiotherapy positioning aids is clinically feasible. Though SNR was reduced, the image quality obtained with a radiotherapy setup meets RTP requirements and the data can thus be used for personalized RTP.


Subject(s)
Diffusion Magnetic Resonance Imaging/methods , Head and Neck Neoplasms/radiotherapy , Positron-Emission Tomography/methods , Fluorodeoxyglucose F18 , Head and Neck Neoplasms/diagnostic imaging , Humans , Patient Positioning , Prospective Studies
18.
Clin Cancer Res ; 24(6): 1364-1374, 2018 03 15.
Article in English | MEDLINE | ID: mdl-29298797

ABSTRACT

Purpose: The aim of this study was to identify and independently validate a novel gene signature predicting locoregional tumor control (LRC) for treatment individualization of patients with locally advanced HPV-negative head and neck squamous cell carcinomas (HNSCC) who are treated with postoperative radio(chemo)therapy (PORT-C).Experimental Design: Gene expression analyses were performed using NanoString technology on a multicenter training cohort of 130 patients and an independent validation cohort of 121 patients. The analyzed gene set was composed of genes with a previously reported association with radio(chemo)sensitivity or resistance to radio(chemo)therapy. Gene selection and model building were performed comparing several machine-learning algorithms.Results: We identified a 7-gene signature consisting of the three individual genes HILPDA, CD24, TCF3, and one metagene combining the highly correlated genes SERPINE1, INHBA, P4HA2, and ACTN1 The 7-gene signature was used, in combination with clinical parameters, to fit a multivariable Cox model to the training data (concordance index, ci = 0.82), which was successfully validated (ci = 0.71). The signature showed improved performance compared with clinical parameters alone (ci = 0.66) and with a previously published model including hypoxia-associated genes and cancer stem cell markers (ci = 0.65). It was used to stratify patients into groups with low and high risk of recurrence, leading to significant differences in LRC in training and validation (P < 0.001).Conclusions: We have identified and validated the first hypothesis-based gene signature for HPV-negative HNSCC treated by PORT-C including genes related to several radiobiological aspects. A prospective validation is planned in an ongoing prospective clinical trial before potential application in clinical trials for patient stratification. Clin Cancer Res; 24(6); 1364-74. ©2018 AACR.


Subject(s)
Biomarkers, Tumor , Head and Neck Neoplasms/genetics , Head and Neck Neoplasms/therapy , Transcriptome , Adolescent , Adult , Aged , Aged, 80 and over , Chemoradiotherapy , Child , Female , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Head and Neck Neoplasms/diagnosis , Head and Neck Neoplasms/mortality , Humans , Male , Middle Aged , Neoplasm Grading , Neoplasm Metastasis , Neoplasm Staging , Postoperative Care , Retrospective Studies , Treatment Outcome , Young Adult
19.
Radiother Oncol ; 127(1): 27-35, 2018 04.
Article in English | MEDLINE | ID: mdl-29295747

ABSTRACT

OBJECTIVE: To compare six HPV detection methods in pre-treatment FFPE tumour samples from patients with locally advanced head and neck squamous cell carcinoma (HNSCC) who received postoperative (N = 175) or primary (N = 90) radiochemotherapy. MATERIALS AND METHODS: HPV analyses included detection of (i) HPV16 E6/E7 RNA, (ii) HPV16 DNA (PCR-based arrays, A-PCR), (iii) HPV DNA (GP5+/GP6+ qPCR, (GP-PCR)), (iv) p16 (immunohistochemistry, p16 IHC), (v) combining p16 IHC and the A-PCR result and (vi) combining p16 IHC and the GP-PCR result. Differences between HPV positive and negative subgroups were evaluated for the primary endpoint loco-regional control (LRC) using Cox regression. RESULTS: Correlation between the HPV detection methods was high (chi-squared test, p < 0.001). While p16 IHC analysis resulted in several false positive classifications, A-PCR, GP-PCR and the combination of p16 IHC and A-PCR or GP-PCR led to results comparable to RNA analysis. In both cohorts, Cox regression analyses revealed significantly prolonged LRC for patients with HPV positive tumours irrespective of the detection method. CONCLUSIONS: The most stringent classification was obtained by detection of HPV16 RNA, or combining p16 IHC with A-PCR or GP-PCR. This approach revealed the lowest rate of recurrence in patients with tumours classified as HPV positive and therefore appears most suited for patient stratification in HPV-based clinical studies.


Subject(s)
Carcinoma, Squamous Cell/virology , Head and Neck Neoplasms/virology , Human papillomavirus 16/isolation & purification , Neoplasm Recurrence, Local/virology , Papillomavirus Infections/virology , Adult , Aged , Carcinoma, Squamous Cell/drug therapy , Carcinoma, Squamous Cell/pathology , Carcinoma, Squamous Cell/radiotherapy , Chemoradiotherapy , Female , Head and Neck Neoplasms/drug therapy , Head and Neck Neoplasms/pathology , Head and Neck Neoplasms/radiotherapy , Human papillomavirus 16/genetics , Human papillomavirus 16/metabolism , Humans , Immunohistochemistry , Male , Middle Aged , Neoplasm Recurrence, Local/drug therapy , Neoplasm Recurrence, Local/pathology , Neoplasm Recurrence, Local/radiotherapy , Oncogene Proteins, Viral/genetics , Oncogene Proteins, Viral/metabolism , Papillomavirus E7 Proteins/genetics , Papillomavirus E7 Proteins/metabolism , Papillomavirus Infections/metabolism , Prognosis , RNA, Viral/genetics , Real-Time Polymerase Chain Reaction , Repressor Proteins/genetics , Repressor Proteins/metabolism , Retrospective Studies , Squamous Cell Carcinoma of Head and Neck
20.
Radiother Oncol ; 126(1): 125-131, 2018 01.
Article in English | MEDLINE | ID: mdl-29061496

ABSTRACT

INTRODUCTION: Preclinical and clinical data suggest that the chemokine pathway governed by SDF-1 and CXCR4 contributes to a resistant phenotype. This retrospective biomarker study aims to explore the specific prognostic value of SDF-1 and CXCR4 expression in locally advanced head and neck squamous cell carcinomas (HNSCC) treated with primary radiochemotherapy (RT-CT). MATERIAL AND METHODS: Biopsies from 141 HNSCC tumours of the oral cavity, oropharynx and hypopharynx were evaluated for SDF-1 and CXCR4 expression by immunofluorescence. SDF-1 and CXCR4 expression was correlated with clinico-pathological characteristics and outcome after RT-CT. RESULTS: Patients with tumours exhibiting overexpression of intracellular SDF-1 and CXCR4 have a higher risk for loco-regional relapse and a worse overall survival after RT-CT (multivariate analysis, hazard ratio 2.33, CI [1.18-4.62], p = 0.02 and hazard ratio 2.02, CI [1.13-3.59], p = 0.02, respectively). Similar results were observed when only the subgroup of HPV DNA negative patients were analysed (hazard ratio 2.23 and 2.16, p = 0.02 and p = 0.01, respectively). CONCLUSIONS: Our data support the importance of SDF-1 and CXCR4 expression for loco-regional control and overall survival in HNSCC after primary radiochemotherapy. Prospective multivariate validation and further studies into CXCR4 inhibition to overcome radiation resistance are warranted.


Subject(s)
Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/therapy , Chemokine CXCL12/biosynthesis , Head and Neck Neoplasms/metabolism , Head and Neck Neoplasms/therapy , Receptors, CXCR4/biosynthesis , Aged , Biomarkers, Tumor/biosynthesis , Carcinoma, Squamous Cell/drug therapy , Carcinoma, Squamous Cell/radiotherapy , Chemoradiotherapy , Female , Head and Neck Neoplasms/drug therapy , Head and Neck Neoplasms/radiotherapy , Humans , Male , Middle Aged , Neoplasm Recurrence, Local/metabolism , Neoplasm Recurrence, Local/pathology , Neoplasm Staging , Prognosis , Prospective Studies , Retrospective Studies , Squamous Cell Carcinoma of Head and Neck , Survival Rate
SELECTION OF CITATIONS
SEARCH DETAIL
...